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Introduction
Optimization is ubiquitous in nature and society.

Optimization arises in a wide variety of scientific
problems.

Optimization is an important tool for design,

planning, control, operation, and management of
engineering systems.
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Problem Formulation
Consider a general optimization problem:

OP; : Minimize  f(x)
subject to  c¢(x) <0,
= 0,

d(z)

wherex € R" is the vector of decision variableg(x)
is an objective function;(z) = [c1(x), ..., cn(2)] is
a vector-valued function, and

d(z) = [di(z),...,d,(z)]" avector-valued function.
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Problem Formulation
Consider a general optimization problem:

OP; : Minimize  f(x)
subject to  c¢(x) <0,
d(z) =0,

wherex € R" is the vector of decision variableg(x)

is an objective function;(z) = [c1(x), ..., cn(2)] is
a vector-valued function, and
d(z) = [di(z),...,d,(z)]" avector-valued function.

If f(x)andc(z) are convex and(x) is affine, then

OP Is a convex programming problem CP. Otherw
It IS a nonconvex proqram. Computational Intelligence Laboratory, CUHK — p. 3/



Quadratic and Linear Programs

|

QP : minimize §xTQx +q'x
subject to  Ax = b,
[ < Cx < h,

where() € R™*" ,q € R", A € ™",
be R C e R"™" [ e R" heR".
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Quadratic and Linear Programs

1
QP : minimize 5:13TQ$ +q'x
subject to  Ax = b,
[ < Cx < h,

where@) € R"*" ,q € R", A € ™",

be R C e R"™" [ e R" heR".

When(@ = 0, andC = I, QP, becomes a linear
program with equality and bound constraints:

LP; : minimize ¢’z
subject to  Ax = b,
[<x<h

Computational Intelligence Laboratory, CUHK — p. 4/



Dynamic Optimization

In many applications (e.g., online pattern recogniti
and onboard signal processing), real-time solution
optimization problems are necessary or desirable.
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Dynamic Optimization

In many applications (e.g., online pattern recogniti
and onboard signal processing), real-time solution
optimization problems are necessary or desirable.

For such applications, classical optimization
techniques may not be competent due to the probl
dimensionality and stringent requirement on
computational time.

It Is computationally challenging when optimizatior
procedures have to be performed in real time to
optimize the performance of dynamical systems.

One very promising approach to dynamic
optimization is to apply artificial neural networks.
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Neurodynamic Optimization

Because of the inherent nature of parallel and
distributed information processing in neural netwo
the convergence rate of the solution process Is not
decreasing as the size of the problem increases.
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Neurodynamic Optimization

Because of the inherent nature of parallel and

C

Istributed information processing in neural netwo

the convergence rate of the solution process Is not

C

ecreasing as the size of the problem increases.

Neural networks can be implemented physically in
designated hardware such as ASICs where
optimization is carried out in a truly parallel and
distributed manner.

This feature Is particularly desirable for dynamic
optimization in decentralized decision-making
situations.
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Existing Approaches

In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
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Existing Approaches

In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman probler

Kennedy and Chua (1988) developed a neural net
for nonlinear programming, which contains finite

penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

The two-phase optimization networks by Maa and
Shanblatt (1992).

The Lagrangian networks for quadratic programmi
by Zhang and Constantinides (1992) and Zhang, €
(1992).
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Existing Approaches (cont’d)

A recurrent neural network for quadratic optimizati
with bounded variables only by Bouzerdoum and
Pattison (1993).
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Existing Approaches (cont’d)

A recurrent neural network for quadratic optimizati
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

The primal-dual networks for linear and quadratic
programming by Xia (1996, 1997).

The projection networks for solving projection
equations, constrained optimization, etc by Xia an
Wang (1998, 2002, 2004) and Liang and Wang
(2000).
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Existing Approaches (cont’d)

The dual networks for quadratic programming by >
and Wang (2001), Zhang and Wang (2002).
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Existing Approaches (cont’d)

The dual networks for quadratic programming by >
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subje
to nonlinear inequality constraints by Xia and Wan
(2004).

A simplified dual network for quadratic programmi
by Liu and Wang (2006)

Two one-layer networks with discontinuous activat
functions for linear and quadratic programming by
Liu and Wang (2008).
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Primal-Dual Network
The primal-dual network for solving LP:

e = —(¢'z —by)g — AT (Ax — b) + 2™,
dy T T
— = — b y)b

wheree > 0 Is a scaling parameter,c R" Is the
primal state vectory € R is the dual (hidden) state

vector,z™ = (x7),...,z"), andz] = max{0, z;}.

Y. Xia, “A new neural network for solving linear and quadcafirogramming problems

|EEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Primal-Dual Network
The primal-dual network for solving LP:

d
ed—f = —(¢'z —bly)g— AT (Az — b) + =™,
dy T T

— = — b y)b

wheree > 0 Is a scaling parameter,c R" Is the
primal state vectory € R is the dual (hidden) state
vector,z™ = (x7),...,z"), andz] = max{0, z;}.
The network is globally convergent to an optimal
solution to LR.

Y. Xia, “A new neural network for solving linear and quadcafirogramming problems

|EEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Lagrangian Network for QP
If C'=01iInQP;:

A ( ;c ) _ ( ~Qu(t) ~ ATy . ) |

wheree > 0, x € R",y € R".

It Is globally exponentially convergent to the optime
solutiort.

J. Wang, Q. Hu, and D. Jiang, “A Lagrangian network for kine@meontrol of redundant

robot manipulators,’JEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1123-1132, 199!

Computational Intelligence Laboratory, CUHK — p. 11/



Projection Network

A recurrent neural network called the projection
network was developed for optimization with bounc
constraints only

dx
= 7 +g(x — V f(x)),

whereg(-) is a vector-valued piecewise-linear
activation function.

Y.S. Xia and J. Wang, “On the stability of globally projectgghamic systems,J. of Opti-
mization Theory and Applicationsol. 106, no. 1, pp. 129-150, 2000.
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Plecewise-Linear
Function

AcClivation

r; <

x; > h;.
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I WO-layeEl FT1OJjeClor INEWWOIK
for QP1

If C' =11inQP, leta =1 inthe two-layer neural
network for CP:

6%(@“) (—x+g((1—Q)x+ATy—Q)>.

Y —Axz + b

wheree > 0,z € R",y € R,
g(x) = [g(z1), ..., g(x,)]! is the piecewise-linear
activation function defined before.

It is globally asymptotically convergent to the optin
solutiort.

Y.S. Xia, H. Leung, and J. Wang, “A projection neural netwarld its application to con

strained optimization problemsEEE Trans. Circuits and Systems/bl. 49, no. 4, pp. 447-458

2002. Computational Intelligence Laboratory, CUHK — p. 14/



ocrlicial ProjeCuort NetwoOrk 101

QP;

The dynamic equation of the general projection ne
network (GPNN):

wheree > 0 andz = (2!, y")! is the state vector,

- [Q —Al (I 0
M= (O I N = A0/
The GPNN is globally convergent to an exact solut
of the probler.

Y. Xia and J. Wang, “A general projection neural network folveng optimization and re-

lated problems,TEEE Trans. Neural Networks, vol. 15, pp. 3188283 OHjgence Laboratory, CUHK —p. 15/



Dual Network for QP

For strictly convex QPR, () is invertible. The dynamic
equation of the dual network:

) _ —CQ'C'y+g(CQ™'Cy —y — Cq)

dt
+C'q + 0,
z(t) = Q 'Cly—q,

wheree > 0. It is also globally exponentially
convergent to the optimal soluti®A.

Y. Xia and J. Wang, “A dual neural network for kinematic cahwf redundant robot manip

ulators,”| EEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 1, pp. 147-154, 2001.

Y. Zhang and J. Wang, “A dual neural network for convex quaci@mogramming subject tc

linear equality and inequality constraint®hysics Letters A, pp. 271-278, 2002.
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Simplified Dual Net for QP;

For strictly convex QPR @ is invertible. The dynamic
equation of the simplified dual netwotk

du
€ = —Cz+ g(Cx — u),

r=Q '(AMy + CTu—q),
y = (AQ AT [-AQ'CTu+ AQ ¢ +b],

whereu € R” Is the state vectok, > 0.
It Is proven to be globally asymptotically converger
to the optimal solution.

S. Liu and J. Wang, “A simplified dual neural network for quettr programming with its

KWTA application,” [EEE Trans. Neural Networksol. 17, no. 6, pp. 1500-1510, 2006.
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lllustrative Example

minimize

Tox4g — 11lx1 — Dy

subjectto 3x; — 3xo — 223 + x4 = 0,

41 + x9 — 23 — 224 = 0,
—x1 + 22 < —1,
—2 < 3x1 +x3 < 4.

6 3 5 0 ~11
3 6 0 1 B 0
5 08 0] @ 0
0 1 0 10 | =5
3.8 2 1| |0
4 1 -1 -2 0
-1 1 0 0 |
3 0 1 0 I

3:13% + 333% + 4:13% + 5:13?l + 3x1x2 + D13+
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lllustrative Example (cont’d)

The simplified dual neural network for solving this
guadratic program needs only two neurons only.

In contrast, the Lagrange neural network needs tw
neurons.

The primal-dual neural network needs nine neuror

The dual neural network needs four neurons.
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lllustrative Example (cont’d)

Transient behaviors of the state vector

Computational Intelligence Laboratory, CUHK — p. 20/




lllustrative Example (cont’d)

Transient behaviors of the output vector
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lllustrative Example (cont’d)

Trajectories ofr; andz, from different initial states.



lllustrative Example (cont’d)

Trajectories ofrs andz, from different initial states.



HTIPIOved vual INEL 101 speclidl
QP

For special convex QRvhen( = I, the dynamic
equation of the improved dual netwérk

7 = Az — b)*
dz

— = _Cz+d

Edt T+ d,

v = go(-A'y+C"z—p),

whereg(-) and(-)™ are two activation functions.
It Is proven to be globally convergent to the optima
solution.

X. Hu and J. Wang, “An improved dual neural network for sofyvia class of quadrati

programming problems and ifs winners-take-all applicationJEEE Trans. Neural Networks

Computational Intelligence Laboratory, CUHK — p. 24/

vol. 19, no. 12, pp. in press, 2008.



A One-layer Net for LP

A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming LP

ecji—f = —Px—o( — P)g(x) + s,

whereg(z) = (g1(71), ga(22), . - -, gu(zn))" IS the
vector-valued activation function,is a positive

scaling constanty Is a nonnegative gain parameter,
P =AY (AAT)" 1A and
s=—(I — P)qg+ AT"(AAT) b,

Q. Liu, and J. Wang, “A one-layer recurrent neural networthvai discontinuous activatiol

function for linear programmingfeural Computation, vol. 20, no. 5, pp. 1366-1383, 2008.

Computational Intelligence Laboratory, CUHK — p. 25/



Activation Function

A discontinuous activation function is defined as
follows: For: =1,2,... n;

1, If Xr; > hi,

[ - 1], If L; — hi,
gz(xz) — O, If €X; © (l@, hz),

[—1, O], If L; — li,

—1, If x; <.

Computational Intelligence Laboratory, CUHK — p. 26/



Activation Function (cont’d)

4 gi(ﬂfi)

Computational Intelligence Laboratory, CUHK — p. 27/



Convergence Results

The neural network is globally convergent to an
thimal solution of LRwith C' = I, if QQ C 2, where
(2 is the equilibrium point setand = {z|l < x < h}.
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Convergence Results

The neural network is globally convergent to an
thimal solution of LRwith C' = I, if Q2 C 2, where
(2 is the equilibrium point setand = {z|l < x < h}.

The neural network is globally convergent to an
optimal solution of LR with C' = I, if it has a unique
equilibrium point ands > 0 when(/ — P)c =0 or
one of the following conditions holds when

(I — P)c # 0:
() o> |[(I - P)ell,/ min'_y |(I — P)y]|, for
p=1 2 00,0r

(i) o>cl'(I—P)c/ min;reXﬂcT(] — P)y
whereX = {-1,0,1}"

}
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Simulation Results
Consider the following LP problem:

minimize 4oy + x9 + 213,

subject to T, — 2T + T3 = 2,
—T1 + 2513‘2 -+ X3 — 1,
—9 < L1, L9, X3 < D.

According to the above condition, the lower bound
o1S9

Computational Intelligence Laboratory, CUHK — p. 29/



Simulation Results (cont’d)

state trajectories

time (sec)

Transient behaviors of the states with= 15.
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Simulation Results (cont’d)

: ,N ‘\\\\
N
WL

N ) X5

X1
0.2 0.4 0.6 0.8 1
time (sec) X107

Transient behaviors of the states with= 9.



Simulation Results (cont’d)

Transient behaviors of the states with= 5.



Simulation Results (cont’d)

Transient behaviors of the states with= 3.
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A New One-layer Net for QP

A new one-layer recurrent neural net was recently
developed:

% — —(I-P)z—[(I-P)Q+aPlg(z)+q,

v = (I -P)Q+aP) (= - P)z+s),
wheree Is a positive scaling constant,> 0 IS a
parameters = —q + Pq + a AT (AAT)~1b, andg(-) is
a vector-valued activation function.

Q. Liu, and J. Wang, “A one-layer recurrent neural networkhva discontinuous hard

limiting activation function for quadratic programmindEEE Transactions on Neural Networks,

vol. 19, no. 4, pp. 558-570, 2008.
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Activation Function

The following hard-limiting activation function is
defined:

= h;, ifZi>>O,
gi(zi) § € [li,hi], 1f z; =0,
— g, ifZi<:O.

If [, # h;, theng; Is discontinuous.

Whenz; = 0, g;(z;) can take any values betwegn
andh;.

Computational Intelligence Laboratory, CUHK — p. 35/



Activation Function (cont’d)

49 (Zz')
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Convergence results

Assume that) is positive definite. v > A\, (Q)/2
or o > trace(Q)/2, then the state vectair(t) of the
neural network is globally convergent to an
equilibrium point and the output vecto(t) is
globally convergent to an optimal solution of QP.

Assume that the objective functigijx) is strictly
convexonthesef = {z € R": Az = b}. If

o > )\maX(QQ))\maX(Q_l)/47

then the state vectar(t) of the neural network is

globally convergent to an equilibrium point and the
output vectorr(t) is globally convergent to an optim
solution of QP. S 0 N



lllustrative Example

Consider the following QP problem:

minimize f(z) = —0.52% + x5 + 2x179 + 6171 -
subject to 31 — 219 = 1,
0 S L1, L9 S 10.

—0.5 1
o= (77 )

IS not positive definite, the objective function Is not
convex everywhere. However, if we substitute
r1 = 2x9/3 + 1/3 into the objective function, then

f(x9) = 1922/9 + 22x5/9 — 35/18 is convex.

Computational Intelligence Laboratory, CUHK — p. 38/
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lllustrative Example (cont’d)

The state variables of the new network.

state trajectories

time (sec)
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lllustrative Example (cont’d)

The output variables of the new network.

output trajectories

15 20

time (sec)
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lllustrative Example (cont’d)

Phase plot of the output variabnles.

state variables

5
4
3
21
1
0
-1
-2
-3
-4
S

(62}
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lllustrative Example (cont’d)
The simulation result of the dual network.

200

sign(x,)log, (I,

100

50

0

-50

15 20
time (sec)
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lllustrative Example (cont’d)

The simulation result of the projection network.

15 20

time (sec)
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Model Comparisons for QP

model layers | neurons | connections | convergence condition
Lagrangian network p 3n+m | n?+2mn f(x) is strictly convex
Primal-dual network 2 n+m | 3n?24+3mn | f(x)is convex

General projection net n+m n? + 2mn f(x) is convex

Dual network

2

Simplified dual network n n f(x) is strictly convex

=== | N

€
()
n+m (n +m)? f(z) is strictly convex
()
()

New neural network n 2n? f(x) is strictly convex onS

where$§ = {z € R" : Az = b}.

Computational Intelligence Laboratory, CUHK — p. 44/



k Winners Take All Operation

The k-winners-take-all {(WTA) operation is to selec
the £k largest inputs out of inputs (1 < k < n).
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k Winners Take All Operation

The k-winners-take-all {(WTA) operation is to selec
the £k largest inputs out of inputs (1 < k < n).

The KkWTA operation has important applications in
machine learning, such asneighborhood
classificationk-means clustering, etc.

As the number of inputs increases and/or the sele
process should be operated in real time, parallel
algorithms and hardware implementation are
desirable.
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EWTA Problem Formulations
The KkWTA function can be defined as:

ﬂfiZf(Ui):{

1, if u; € {k largest elements af},
0, otherwise

whereu € R” andz € R" is the input vector and
output vector, respectively.
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EWTA Problem Formulations
The KkWTA function can be defined as:

ﬂfi:f(ui):{

1, if u; € {k largest elements af},
0, otherwise

whereu € R” andz € R" is the input vector and
output vector, respectively.

The kWTA solution can be determined by solving t
following linear integer program:

n
minimize — > w;x;,
1=1

subjectto ) z; =k,
=1

‘/I;’L E {07 1 } 9 /L :Compl(atiOZI:Intélligerfceﬂ_agg/atory, CUHK —p. 46/



EWTA Problem Formulations

If the kth and(k + 1)th largest elements af are
different (denoted ag, anduy_; respectively), the
KWTA problem is equivalent to the following LP or
QP problems:

minimize —u'z or %xTx——uTx,

subjectto ) z; =k,
1=1
0<x; <1, 1=12,...,n,

wherea < u; — 4.1 IS @ positive constant.

Computational Intelligence Laboratory, CUHK — p. 47/



QP-based Primal-Dual Network

The primal-dual network based on the QP formula
needs3n + 1 neurons an®n + 2 connections, and it:
dynamic equations can be written as:

dx

e = —(14+a)(z—(z+vet+w—ax+u))
—(elz—kle—z—y+e

6% = —y+@y+tw)F—xz—y+e

e = —el(z—(zr+vet+w—azr+u)h)
+elr —k

e = —p+(r+vetw—ar+u)’
—y+(y+w) T +ax+y—e

wherez,y,w € R, v € R,e = (1,1,...,1)! € R",

€ > O, ZIZ‘+ — (jSI—, .« .. ,Qf_l_)T, andx;_Com_pmmEEIal@el)@e{c@ag)o@;Ly}UHK—p.48/<

n



QP-based Projection Network

The projection neural network féa\WTA operation
based on the QP formulation needs- 1 neurons anc
2n + 2 connections, which dynamic equations can
written as:

e = —g+ g(x —nlaxr — ye — u)),
e% = iyt

wherex € R", y € R, e andn are positive constants,
g(z) = (g(z1),...,g9(z,))! and

0, If x; < 0,
g(x;) = if 0 <ux; <1,
1, if z; > 1.

Computational Intelligence Laboratory, CUHK — p. 49/



L P-based Projection Network

Based on the equivalent LP formulation, we propo:
recurrent neural network for KWTA operation with |

dynamical equations as follows:

e — Ty — k,

{ €% = —1 + g(z + aey + au),
dt

wheree > 0, > 0,2 € R",y € R.

Computational Intelligence Laboratory, CUHK — p. 50/



QP-based Simplified Dual Net

The simplified dual neural network fa&iVTA
operation based on the QP formulatoneeds:
neurons andn connections, and its dynamic equat
can be written as:

W = —My+g(M— Iy —s)—s
r = My+ s,

wherez,y € R", M = 2(I — ee! /n)/a,
s = Mu + ke/n, I is an identity matrixe andg are
defined as before.

S. Liu and J. Wang, “A simplified dual neural network for quatdr programming with its

KWTA application,” [EEE Trans. Neural Networksol. 17, no. 6, pp. 1500-1510, 2006.

Computational Intelligence Laboratory, CUHK — p. 51/



LP-based One-layerkWTA Net

The dynamic equation of a new LP-basaif TA
network model is described as follows:

d
e — _Pr— o(l — P)g(z) + s,

dt
whereP = eel /n, s = u — Pu + ke/n, € is a positive
scaling constanty is a nonnegative gain parameter,

andg(z) = (g(z1), g(x2), ..., g(z,)) isa
discontinuous vector-valued activation function.
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Activation Function

A discontinuous activation function is defined as
follows:

1, if z; > 1,
[ ,1], If Li — 1,
g(x;) =< 0, if 0 <x; <1,

[—1,0], If X :O,
—1, If z; <O.
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Activation Function (cont’d)
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Convergence Results

The network can perform theNTA operation If
QC{xreR":0<z< 1}, wheref is the set of
equilibrium point(s).

The network can perform thi@NTA operation if it
has a unique equilibrium point ad> 0 when

(I — ee! /n)u = 0 or one of the following conditions

holds when(I — eel /n)u # 0:

D |u,,;—2;b:1 ujg/n|
2n—2

n s =" w.s/n)2
(i) azn\/zil( ;(E_a;; 2O o

i) o>

, OF

(i) o > 2max; |u; — > 5_; u;/nl,or,

VE T (=7 uj/n)?
ind oo {I TR (=T ui/m)l}

(v) o>
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Simulation Results

Consider &WTA problem with input vector
w;,=1(i=1,2,...,n),n=>5k=3.

i

| KA
vf'/' /A

Transient behaviors of tHieNTA networko = 6.
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Simulation Results (cont’d)

state trajectories

I
e

/
//"

Al
\4\“
A=
Vs
/‘?" X
/ /V\\x_
/ A
N/
l
7/

. ;W’

time (sec)

Transient behaviors of theNTA network witho = 2.
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Simulation Results (cont’d)

time (sec)

Convergence behavior of th&VTA network with
respect to different values af
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QP-based One-layerkWTA Net

A QP-based:WTA network model with a
discontinuous activation function is described as
follows:

e% = —(I[—P)z—lal + (1 —a)Plg(z) + s,
r = —%([—P)Z—Fg | k(an; 1)6,

whereg(z) = (g(21),g(z2). .. g(z))" isa_
discontinous activation function ards a positive

scaling constant.
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Activation Function

1, if z; > 0,

g(z;) =< [0,1], if z; =0,
0, If z; <O.
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Convergence Results

The neural network with any > 0 Is stable in the
sense of Lyapunov and any trajectory is globally
convergent to an equilibrium point.

r*=—( —P)z"/a+ s/a+ (a — 1)ke/(na) is an
optimal solution o’k WTA problem, where:* Is an
equilibrium point of the neural network.
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Simulation Results

state trajectories

time (sec)
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Simulation Results (cont’d)

output trajectories

1
time (sec)
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Simulation Results (cont’d)

0=0.01,n=5
— — —0=0.10,n=5

— - — 0=1.00,n=5

1
time (sec)
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Simulation Results (cont’d)

n=5,0=0.01
— — —n=10,0=0.01
n=15,0=0.01
—— n=20,0=0.01

time (sec)
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A Dynamic Example

Let Inputs be 4 sinusoidal input signals (1.e.—= 4)
u;(t) = 10sin|27 (1000t + 0.2(¢ — 1)], andk = 2.
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Model Comparisons

model layer(s) | neurons| connections
LP-based primal-dual network 2 n+1 2n + 2
QP-based primal-dual network | 2 3n+1 | 6n—+2
LP-based projection network 2 n—+1 2n + 2
QP-based projection network 2 n+1 2n + 2
QP-based simplified dual network 1 n 3n
LP-based one-layer network 1 n 2n
QP-based one-layer network 1 n 3n

Q

Q. Liu, and J. Wang, “Twd:-winners-take-all networks with discontinuous activatfanc-

tions,” Neural Networks, vol. 21, no. 2-3, pp. 406-413, 2008.
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Concluding Remarks

Neurodynamic optimization has been demonstrate
be a powerful alternative approach to many
optimization problems.

For convex optimization, recurrent neural networks
are available with global convergence to the optim:
solution.

Neurodynamic optimization approaches provide

parallel distributed computational models more
suitable for real-time applications.
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Future Works

The existing neurodynamic optimization model car
still be improved to reduce their model complexity
Increase their convergence rate.

The available neurodynamic optimization model ce
be applied to more areas such as control, robotics,
signal processing.

Neurodynamic approaches to global optimization &
discrete optimization are much more interesting ar
challenging.

It iIs more needed to develop neurodynamic model
for nonconvex optimization and combinatorial
optimization.
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