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Introduction
Optimization is ubiquitous in nature and society.

Optimization arises in a wide variety of scientific
problems.

Optimization is an important tool for design,
planning, control, operation, and management of
engineering systems.
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Problem Formulation
Consider a general optimization problem:

OP1 : Minimize f(x)

subject to c(x) ≤ 0,

d(x) = 0,

wherex ∈ ℜn is the vector of decision variables,f(x)

is an objective function,c(x) = [c1(x), . . . , cm(x)]T is
a vector-valued function, and
d(x) = [d1(x), . . . , dp(x)]T a vector-valued function.
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Problem Formulation
Consider a general optimization problem:

OP1 : Minimize f(x)

subject to c(x) ≤ 0,

d(x) = 0,

wherex ∈ ℜn is the vector of decision variables,f(x)

is an objective function,c(x) = [c1(x), . . . , cm(x)]T is
a vector-valued function, and
d(x) = [d1(x), . . . , dp(x)]T a vector-valued function.

If f(x) andc(x) are convex andd(x) is affine, then
OP is a convex programming problem CP. Otherwise,
it is a nonconvex program. Computational Intelligence Laboratory, CUHK – p. 3/69



Quadratic and Linear Programs

QP1 : minimize
1

2
xTQx + qTx

subject to Ax = b,

l ≤ Cx ≤ h,

whereQ ∈ ℜn×n , q ∈ ℜn, A ∈ ℜm×n,
b ∈ ℜm, C ∈ ℜn×n, l ∈ ℜn, h ∈ ℜn.
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Quadratic and Linear Programs

QP1 : minimize
1

2
xTQx + qTx

subject to Ax = b,

l ≤ Cx ≤ h,

whereQ ∈ ℜn×n , q ∈ ℜn, A ∈ ℜm×n,
b ∈ ℜm, C ∈ ℜn×n, l ∈ ℜn, h ∈ ℜn.
WhenQ = 0, andC = I, QP1 becomes a linear
program with equality and bound constraints:

LP1 : minimize qTx

subject to Ax = b,

l ≤ x ≤ h
Computational Intelligence Laboratory, CUHK – p. 4/69



Dynamic Optimization
In many applications (e.g., online pattern recognition
and onboard signal processing), real-time solutions to
optimization problems are necessary or desirable.
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Dynamic Optimization
In many applications (e.g., online pattern recognition
and onboard signal processing), real-time solutions to
optimization problems are necessary or desirable.

For such applications, classical optimization
techniques may not be competent due to the problem
dimensionality and stringent requirement on
computational time.

It is computationally challenging when optimization
procedures have to be performed in real time to
optimize the performance of dynamical systems.

One very promising approach to dynamic
optimization is to apply artificial neural networks.
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Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.
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Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.

Neural networks can be implemented physically in
designated hardware such as ASICs where
optimization is carried out in a truly parallel and
distributed manner.

This feature is particularly desirable for dynamic
optimization in decentralized decision-making
situations.
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Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.
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Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.

Kennedy and Chua (1988) developed a neural network
for nonlinear programming, which contains finite
penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

The two-phase optimization networks by Maa and
Shanblatt (1992).

The Lagrangian networks for quadratic programming
by Zhang and Constantinides (1992) and Zhang, et al.
(1992).
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Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).
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Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

The primal-dual networks for linear and quadratic
programming by Xia (1996, 1997).

The projection networks for solving projection
equations, constrained optimization, etc by Xia and
Wang (1998, 2002, 2004) and Liang and Wang
(2000).
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Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).
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Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subject
to nonlinear inequality constraints by Xia and Wang
(2004).

A simplified dual network for quadratic programming
by Liu and Wang (2006)

Two one-layer networks with discontinuous activation
functions for linear and quadratic programming by
Liu and Wang (2008).
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Primal-Dual Network
The primal-dual network for solving LP2a:

ǫ
dx

dt
= −(qTx − bTy)q − AT (Ax − b) + x+,

ǫ
dy

dt
= (qTx − bTy)b,

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the
primal state vector,y ∈ ℜm is the dual (hidden) state
vector,x+ = (x+

1 ), ..., x+
n )T , andx+

i = max{0, xi}.

aY. Xia, “A new neural network for solving linear and quadratic programming problems,”

IEEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Primal-Dual Network
The primal-dual network for solving LP2a:

ǫ
dx

dt
= −(qTx − bTy)q − AT (Ax − b) + x+,

ǫ
dy

dt
= (qTx − bTy)b,

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the
primal state vector,y ∈ ℜm is the dual (hidden) state
vector,x+ = (x+

1 ), ..., x+
n )T , andx+

i = max{0, xi}.
The network is globally convergent to an optimal
solution to LP1.

aY. Xia, “A new neural network for solving linear and quadratic programming problems,”

IEEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Lagrangian Network for QP
If C = 0 in QP1:

ǫ
d

dt

(

x

y

)

=

(

−Qx(t) − ATy(t) − q,

Ax − b

)

.

whereǫ > 0, x ∈ ℜn, y ∈ ℜm.

It is globally exponentially convergent to the optimal
solutiona.

aJ. Wang, Q. Hu, and D. Jiang, “A Lagrangian network for kinematic control of redundant

robot manipulators,”IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1123-1132, 1999.
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Projection Network
A recurrent neural network called the projection
network was developed for optimization with bound
constraints onlya

ǫ
dx

dt
= −x + g(x −∇f(x)),

whereg(·) is a vector-valued piecewise-linear
activation function.

aY.S. Xia and J. Wang, “On the stability of globally projecteddynamic systems,”J. of Opti-

mization Theory and Applications, vol. 106, no. 1, pp. 129-150, 2000.
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Piecewise-Linear Activation
Function

g(xi) =







li xi < li
xi li ≤ xi ≤ hi

hi xi > hi.
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Two-layer Projection Network
for QP1

If C = I in QP1, let α = 1 in the two-layer neural
network for CP:

ǫ
d

dt

(

x

y

)

=

(

−x + g((I − Q)x + ATy − q)

−Ax + b

)

.

whereǫ > 0, x ∈ ℜn, y ∈ ℜm,
g(x) = [g(x1), ..., g(xn)]T is the piecewise-linear
activation function defined before.

It is globally asymptotically convergent to the optimal
solutiona.

aY.S. Xia, H. Leung, and J. Wang, “A projection neural networkand its application to con-

strained optimization problems,”IEEE Trans. Circuits and Systems I, vol. 49, no. 4, pp. 447-458,

2002. Computational Intelligence Laboratory, CUHK – p. 14/69



General projection Network for
QP1

The dynamic equation of the general projection neural
network (GPNN):

ǫ
dz

dt
= (M + N)T{−Nz + g((N − M)z)},

whereǫ > 0 andz = (xT , yT )T is the state vector,

M =

(

Q −AT

0 I

)

, N =

(

I 0

A 0

)

.

The GPNN is globally convergent to an exact solution
of the problema.

aY. Xia and J. Wang, “A general projection neural network for solving optimization and re-

lated problems,”IEEE Trans. Neural Networks, vol. 15, pp. 318-328, 2004.Computational Intelligence Laboratory, CUHK – p. 15/69



Dual Network for QP 2

For strictly convex QP2, Q is invertible. The dynamic
equation of the dual network:

ǫ
dy(t)

dt
= −CQ−1CTy + g

(

CQ−1CTy − y − Cq
)

+Cq + b,

x(t) = Q−1CTy − q,

whereǫ > 0. It is also globally exponentially
convergent to the optimal solutiona b.

aY. Xia and J. Wang, “A dual neural network for kinematic control of redundant robot manip-

ulators,”IEEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 1, pp. 147-154, 2001.
bY. Zhang and J. Wang, “A dual neural network for convex quadratic programming subject to

linear equality and inequality constraints,”Physics Letters A, pp. 271-278, 2002.
Computational Intelligence Laboratory, CUHK – p. 16/69



Simplified Dual Net for QP1

For strictly convex QP1, Q is invertible. The dynamic
equation of the simplified dual networka:

ǫ
du

dt
= −Cx + g(Cx − u),

x = Q−1(ATy + CTu − q),

y = (AQ−1AT )−1
[

−AQ−1CTu + AQ−1q + b
]

,

whereu ∈ R
n is the state vector,ǫ > 0.

It is proven to be globally asymptotically convergent
to the optimal solution.

aS. Liu and J. Wang, “A simplified dual neural network for quadratic programming with its

KWTA application,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1500-1510, 2006.
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Illustrative Example
minimize 3x2

1 + 3x2
2 + 4x2

3 + 5x2
4 + 3x1x2 + 5x1x3+

x2x4 − 11x1 − 5x4

subject to 3x1 − 3x2 − 2x3 + x4 = 0,

4x1 + x2 − x3 − 2x4 = 0,

−x1 + x2 ≤ −1,

−2 ≤ 3x1 + x3 ≤ 4.

Q =















6 3 5 0

3 6 0 1

5 0 8 0

0 1 0 10















, q =















−11

0

0

−5















,

A =





3 −3 −2 1

4 1 −1 −2



 , b =





0

0



 ,

C =





−1 1 0 0

3 0 1 0



 , l =





−∞

−2



 , h =





−1

4



 .
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Illustrative Example (cont’d)
The simplified dual neural network for solving this
quadratic program needs only two neurons only.

In contrast, the Lagrange neural network needs twelve
neurons.

The primal-dual neural network needs nine neurons.

The dual neural network needs four neurons.
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Illustrative Example (cont’d)
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Illustrative Example (cont’d)
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Illustrative Example (cont’d)

−5 −4 −3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

2

x
∗

x1

x
2

Trajectories ofx1 andx2 from different initial states.

Computational Intelligence Laboratory, CUHK – p. 22/69



Illustrative Example (cont’d)
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Improved Dual Net for special
QP1

For special convex QP1 whenQ = I, the dynamic
equation of the improved dual networka:

ǫ
dy

dt
= −y + (y + Ax − b)+,

ǫ
dz

dt
= −Cx + d,

x = gΩ(−ATy + CTz − p),

whereg(·) and(·)+ are two activation functions.
It is proven to be globally convergent to the optimal
solution.

aX. Hu and J. Wang, “An improved dual neural network for solving a class of quadratic

programming problems and itsk winners-take-all application,”IEEE Trans. Neural Networks,

vol. 19, no. 12, pp. in press, 2008. Computational Intelligence Laboratory, CUHK – p. 24/69



A One-layer Net for LP
A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming LP1

a:

ǫ
dx

dt
= −Px − σ(I − P )g(x) + s,

whereg(x) = (g1(x1), g2(x2), . . . , gn(xn))
T is the

vector-valued activation function,ǫ is a positive
scaling constant,σ is a nonnegative gain parameter,
P = AT (AAT )−1A, and
s = −(I − P )q + AT (AAT )−1b.

aQ. Liu, and J. Wang, “A one-layer recurrent neural network with a discontinuous activation

function for linear programming,”Neural Computation, vol. 20, no. 5, pp. 1366-1383, 2008.
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Activation Function
A discontinuous activation function is defined as
follows: Fori = 1, 2, . . . , n;

gi(xi) =



























1, if xi > hi,

[0, 1], if xi = hi,

0, if xi ∈ (li, hi),

[−1, 0], if xi = li,

−1, if xi < li.

Computational Intelligence Laboratory, CUHK – p. 26/69



Activation Function (cont’d)

-
6

0 xi

gi(xi)

1

−1

li hi
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Convergence Results
The neural network is globally convergent to an
optimal solution of LP1 with C = I, if Ω̄ ⊂ Ω, where
Ω̄ is the equilibrium point set andΩ = {x|l ≤ x ≤ h}.
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Convergence Results
The neural network is globally convergent to an
optimal solution of LP1 with C = I, if Ω̄ ⊂ Ω, where
Ω̄ is the equilibrium point set andΩ = {x|l ≤ x ≤ h}.

The neural network is globally convergent to an
optimal solution of LP1 with C = I, if it has a unique
equilibrium point andσ ≥ 0 when(I − P )c = 0 or
one of the following conditions holds when
(I − P )c 6= 0:

(i) σ ≥ ‖(I − P )c‖p/min+

γ∈X ‖(I − P )γ‖p for
p = 1, 2,∞, or

(ii) σ ≥ cT (I − P )c/min+

γ∈X{|c
T (I − P )γ|},

whereX = {−1, 0, 1}n
Computational Intelligence Laboratory, CUHK – p. 28/69



Simulation Results
Consider the following LP problem:

minimize 4x1 + x2 + 2x3,

subject to x1 − 2x2 + x3 = 2,

−x1 + 2x2 + x3 = 1,

−5 ≤ x1, x2, x3 ≤ 5.

According to the above condition, the lower bound of
σ is 9

Computational Intelligence Laboratory, CUHK – p. 29/69



Simulation Results (cont’d)
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Simulation Results (cont’d)

0 0.2 0.4 0.6 0.8 1

x 10
−5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

time (sec)

state trajectories

x
1

x
2

x
3

Transient behaviors of the states withσ = 9.
Computational Intelligence Laboratory, CUHK – p. 31/69



Simulation Results (cont’d)
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Simulation Results (cont’d)
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A New One-layer Net for QP
A new one-layer recurrent neural net was recently
developeda:

ǫ
dz

dt
= −(I − P )z − [(I − P )Q + αP ]g(z) + q,

x = ((I − P )Q + αP )−1(−(I − P )z + s),

whereǫ is a positive scaling constant,α > 0 is a
parameter,s = −q + Pq + αAT (AAT )−1b, andg(·) is
a vector-valued activation function.

aQ. Liu, and J. Wang, “A one-layer recurrent neural network with a discontinuous hard-

limiting activation function for quadratic programming,”IEEE Transactions on Neural Networks,

vol. 19, no. 4, pp. 558-570, 2008.
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Activation Function
The following hard-limiting activation function is
defined:

gi(zi)







= hi, if zi > 0,

∈ [li, hi], if zi = 0,

= li, if zi < 0.

If li 6= hi, thengi is discontinuous.

Whenzi = 0, gi(zi) can take any values betweenli
andhi.
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Activation Function (cont’d)

-
6

0 zi

gi(zi)

hi

li
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Convergence results
Assume thatQ is positive definite. Ifα ≥ λmax(Q)/2
or α ≥ trace(Q)/2, then the state vectorz(t) of the
neural network is globally convergent to an
equilibrium point and the output vectorx(t) is
globally convergent to an optimal solution of QP.

Assume that the objective functionf(x) is strictly
convex on the setS = {x ∈ R

n : Ax = b}. If

α > λmax(Q
2)λmax(Q

−1)/4,

then the state vectorz(t) of the neural network is
globally convergent to an equilibrium point and the
output vectorx(t) is globally convergent to an optimal
solution of QP. Computational Intelligence Laboratory, CUHK – p. 37/69



Illustrative Example
Consider the following QP problem:

minimize f(x) = −0.5x2
1 + x2

2 + 2x1x2 + 6x1 −

subject to 3x1 − 2x2 = 1,

0 ≤ x1, x2 ≤ 10.

As

Q =

(

−0.5 1

1 1

)

is not positive definite, the objective function is not
convex everywhere. However, if we substitute
x1 = 2x2/3 + 1/3 into the objective function, then
f̃(x2) = 19x2

2/9 + 22x2/9 − 35/18 is convex.
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Illustrative Example (cont’d)
The state variables of the new network.
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Illustrative Example (cont’d)
The output variables of the new network.
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Illustrative Example (cont’d)
Phase plot of the output variabnles.
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Illustrative Example (cont’d)
The simulation result of the dual network.
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Illustrative Example (cont’d)
The simulation result of the projection network.
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Model Comparisons for QP1

model layers neurons connections convergence condition

Lagrangian network 2 3n + m n2 + 2mn f(x) is strictly convex

Primal-dual network 2 n + m 3n2 + 3mn f(x) is convex

General projection net 2 n + m n2 + 2mn f(x) is convex

Dual network 1 n + m (n + m)2 f(x) is strictly convex

Simplified dual network 1 n n2 f(x) is strictly convex

New neural network 1 n 2n2 f(x) is strictly convex onS

whereS = {x ∈ R
n : Ax = b}.
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k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).
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k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

ThekWTA operation has important applications in
machine learning, such ask-neighborhood
classification,k-means clustering, etc.

Computational Intelligence Laboratory, CUHK – p. 45/69



k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

ThekWTA operation has important applications in
machine learning, such ask-neighborhood
classification,k-means clustering, etc.

As the number of inputs increases and/or the selection
process should be operated in real time, parallel
algorithms and hardware implementation are
desirable.
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kWTA Problem Formulations
ThekWTA function can be defined as:

xi = f(ui) =

{

1, if ui ∈ {k largest elements ofu},
0, otherwise,

whereu ∈ R
n andx ∈ R

n is the input vector and
output vector, respectively.
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kWTA Problem Formulations
ThekWTA function can be defined as:

xi = f(ui) =

{

1, if ui ∈ {k largest elements ofu},
0, otherwise,

whereu ∈ R
n andx ∈ R

n is the input vector and
output vector, respectively.
ThekWTA solution can be determined by solving the
following linear integer program:

minimize −
n
∑

i=1

uixi,

subject to
n
∑

i=1

xi = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n.Computational Intelligence Laboratory, CUHK – p. 46/69



kWTA Problem Formulations
If the kth and(k + 1)th largest elements ofu are
different (denoted as̄uk andūk+1 respectively), the
kWTA problem is equivalent to the following LP or
QP problems:

minimize −uTx or a
2
xTx − uTx,

subject to
n
∑

i=1

xi = k,

0 ≤ xi ≤ 1, i = 1, 2, . . . , n,

wherea ≤ ūk − ūk+1 is a positive constant.
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QP-based Primal-Dual Network
The primal-dual network based on the QP formulation
needs3n + 1 neurons and6n + 2 connections, and its
dynamic equations can be written as:










































ǫdx
dt

= −(1 + a)(x − (x + ve + w − ax + u)+)

−(eTx − k)e − x − y + e

ǫdy

dt
= −y + (y + w)+ − x − y + e

ǫdv
dt

= −eT (x − (x + ve + w − ax + u)+)

+eTx − k

ǫdw
dt

= −x + (x + ve + w − ax + u)+

−y + (y + w)+ + x + y − e

wherex, y, w ∈ R
n, v ∈ R, e = (1, 1, . . . , 1)T ∈ R

n,
ǫ > 0, x+ = (x+

1 , . . . , x+
n )T , andx+

i = max{0, xi}
(i = 1, . . . , n).
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QP-based Projection Network
The projection neural network forkWTA operation
based on the QP formulation needsn + 1 neurons and
2n + 2 connections, which dynamic equations can be
written as:

{

ǫdx
dt

= −x + g(x − η(ax − ye − u)),

ǫdy

dt
= −eTx + k.

wherex ∈ R
n, y ∈ R, ǫ andη are positive constants,

g(x) = (g(x1), . . . , g(xn))
T and

g(xi) =







0, if xi < 0,

xi, if 0 ≤ xi ≤ 1,

1, if xi > 1.
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LP-based Projection Network
Based on the equivalent LP formulation, we propose a
recurrent neural network for KWTA operation with its
dynamical equations as follows:

{

ǫdx
dt

= −x + g(x + αey + αu),

ǫdy

dt
= eTx − k,

whereǫ > 0, α > 0, x ∈ Rn, y ∈ R.
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QP-based Simplified Dual Net
The simplified dual neural network forkWTA
operation based on the QP formulationa needsn
neurons and3n connections, and its dynamic equation
can be written as:

{

ǫdy

dt
= −My + g((M − I)y − s) − s

x = My + s,

wherex, y ∈ R
n, M = 2(I − eeT/n)/a,

s = Mu + ke/n, I is an identity matrix,ǫ andg are
defined as before.

aS. Liu and J. Wang, “A simplified dual neural network for quadratic programming with its

KWTA application,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1500-1510, 2006.
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LP-based One-layerkWTA Net
The dynamic equation of a new LP-basedkWTA
network model is described as follows:

ǫ
dx

dt
= −Px − σ(I − P )g(x) + s,

whereP = eeT/n, s = u − Pu + ke/n, ǫ is a positive
scaling constant,σ is a nonnegative gain parameter,
andg(x) = (g(x1), g(x2), . . . , g(xn))

T is a
discontinuous vector-valued activation function.
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Activation Function
A discontinuous activation function is defined as
follows:

g(xi) =



























1, if xi > 1,

[0, 1], if xi = 1,

0, if 0 < xi < 1,

[−1, 0], if xi = 0,

−1, if xi < 0.
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Activation Function (cont’d)

-

6

0 xi

g(xi)

1

−1

1
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Convergence Results
The network can perform thekWTA operation if
Ω̄ ⊂ {x ∈ R

n : 0 ≤ x ≤ 1}, whereΩ̄ is the set of
equilibrium point(s).

The network can perform thekWTA operation if it
has a unique equilibrium point andσ ≥ 0 when
(I − eeT/n)u = 0 or one of the following conditions
holds when(I − eeT/n)u 6= 0:

(i) σ ≥
∑ n

i=1 |ui−
∑ n

j=1 uj/n|

2n−2
, or

(ii) σ ≥ n

√

∑

n
i=1

(ui−
∑

n
j=1

uj/n)2

n(n−1)
, or

(iii) σ ≥ 2maxi |ui −
∑n

j=1 uj/n|, or,

(iv) σ ≥

√

∑

n
i=1

(ui−
∑

n
j=1

uj/n)2

min+

γi∈{−1,0,1}

{

|
∑

n
i=1

(ui−
∑

n
j=1

uj/n)γi|
} .
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Simulation Results
Consider akWTA problem with input vector
ui = i (i = 1, 2, . . . , n), n = 5, k = 3.

0 0.2 0.4 0.6 0.8 1

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (sec)

x
1
,x

2

x
3
,x

4
,x

5

state trajectories

Transient behaviors of thekWTA networkσ = 6.
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Simulation Results (cont’d)
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Simulation Results (cont’d)
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QP-based One-layerkWTA Net
A QP-basedkWTA network model with a
discontinuous activation function is described as
follows:

ǫ
dz

dt
= −(I − P )z − [aI + (1 − a)P ]g(z) + s,

x = −
1

a
(I − P )z +

s

a
+

k(a − 1)

na
e,

whereg(z) = (g(z1), g(z2), . . . , g(zn))
T is a

discontinous activation function andǫ is a positive
scaling constant.
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Activation Function

g(zi) =







1, if zi > 0,

[0, 1], if zi = 0,

0, if zi < 0.

-

6

0 zi

h(zi)

1
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Convergence Results
The neural network with anya > 0 is stable in the
sense of Lyapunov and any trajectory is globally
convergent to an equilibrium point.

x∗ = −(I − P )z∗/a + s/a + (a − 1)ke/(na) is an
optimal solution ofkWTA problem, wherez∗ is an
equilibrium point of the neural network.
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Simulation Results
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Simulation Results (cont’d)
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Simulation Results (cont’d)
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Simulation Results (cont’d)
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A Dynamic Example
Let inputs be 4 sinusoidal input signals (i.e.,n = 4)
ui(t) = 10 sin[2π(1000t + 0.2(i − 1)], andk = 2.
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Model Comparisons

model layer(s) neurons connections

LP-based primal-dual network 2 n + 1 2n + 2

QP-based primal-dual network 2 3n + 1 6n + 2

LP-based projection network 2 n + 1 2n + 2

QP-based projection network 2 n + 1 2n + 2

QP-based simplified dual network 1 n 3n

LP-based one-layer network 1 n 2n

QP-based one-layer network 1 n 3n

a

aQ. Liu, and J. Wang, “Twok-winners-take-all networks with discontinuous activation func-

tions,” Neural Networks, vol. 21, no. 2-3, pp. 406-413, 2008.
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Concluding Remarks
Neurodynamic optimization has been demonstrated to
be a powerful alternative approach to many
optimization problems.

For convex optimization, recurrent neural networks
are available with global convergence to the optimal
solution.

Neurodynamic optimization approaches provide
parallel distributed computational models more
suitable for real-time applications.
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Future Works
The existing neurodynamic optimization model can
still be improved to reduce their model complexity or
increase their convergence rate.

The available neurodynamic optimization model can
be applied to more areas such as control, robotics, and
signal processing.

Neurodynamic approaches to global optimization and
discrete optimization are much more interesting and
challenging.

It is more needed to develop neurodynamic models
for nonconvex optimization and combinatorial
optimization.
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