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Outline

• Haplotyping by Perfect Phylogeny, using
Graph Realization.

• Multi-state Perfect Phylogeny Problems,
using Integer Programming.

• Phylogenetic Networks, using graph theory.



SNP Data
• A SNP is a Single Nucleotide Polymorphism - a site in the

genome where two different nucleotides appear with
sufficient frequency in the population (say each with 5%
frequency or more).

• Human SNP maps have been compiled with a density of
about 1 site per 1000. HapMap.

• SNP data is what is mostly collected in populations - it is
much cheaper to collect than full sequence data, and
focuses on variation in the population, which is what is of
interest.



Topic I: Perfect Phylogeny
Haplotyping via Graph

Realization



Genotypes and Haplotypes
Each individual has two “copies” of each

chromosome.
At each site, each chromosome has one of two

alleles (states) denoted by 0 and 1 (motivated by
   SNPs)

0  1  1  1  0  0  1  1  0

1  1  0  1  0  0  1  0  0

2  1  2  1  0  0  1  2  0

Two haplotypes per individual

Genotype for the individual

Merge the haplotypes



Haplotyping Problem
• Biological Problem: For disease association studies,

haplotype data is more valuable than genotype data, but
haplotype data is hard to collect. Genotype data is easy to
collect.

• Computational Problem: Given a set of n genotypes,
determine the original set of n haplotype pairs that
generated the n genotypes.  This is hopeless without a
genetic model.



Perfect Phylogeny Model for
 SNPs: A genetic model
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 Classic NASC: Arrange the sequences in a
matrix. Then (with no duplicate columns),
the sequences can be generated on a unique
perfect phylogeny if and only if no two
columns (sites) contain all four pairs:

                   0,0 and  0,1 and 1,0 and 1,1

             This is the 4-Gamete Test

When can a set of sequences be
derived on a perfect phylogeny?



So, in the case of binary characters, if each pair of columns
allows a tree, then the entire set of columns allows a tree.

For M of dimension n by m, the existence of a perfect phylogeny
for M can be tested in O(nm) time and a
tree built in that time, if there is one. Gusfield, Networks 91



The Perfect Phylogeny Model
We assume that the evolution of extant haplotypes evolved along a perfect

phylogeny with all-0 root.

 Justification: Haplotype Blocks, rare recombination, base problem whose
solution to be modified to incorporate more biological complexity.



 Perfect Phylogeny Haplotype (PPH)

Given a set of genotypes S, find an explaining set 
of haplotypes that fits a perfect phylogeny.

01c
20b
22a
21

sites
A haplotype pair explains a
genotype if the merge of the
haplotypes creates the
genotype. Example: The
merge of 0 1 and 1 0 explains
 2 2.

Genotype matrix

S



The PPH Problem

Given a set of genotypes, find an explaining set 
of haplotypes that fits a perfect phylogeny
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21



The Haplotype Phylogeny Problem

Given a set of genotypes, find an explaining set 
of haplotypes that fits a perfect phylogeny
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The Alternative Explanation

01c
20b
22a
21

01c
01c
10b
00b
00a
11a
21 No tree

possible
for this
explanation



Efficient Solutions to the PPH
problem - n genotypes, m sites

• Reduction to a graph realization problem (GPPH) - build on Bixby-
Wagner or Fushishige solution to graph realization O(nm alpha(nm))
time.  Gusfield, Recomb 02

• Reduction to graph realization - build on Tutte’s graph realization
method O(nm^2) time.  Chung, Gusfield 03

• Direct, from scratch combinatorial approach -O(nm^2) Bafna,
Gusfield  et al JCB 03

• Berkeley (EHK) approach - specialize the Tutte solution to the PPH
problem - O(nm^2) time.

• Linear-time solutions - Recomb 2005, Ding, Filkov, Gusfield and a
different linear time solution.



The Reduction Approach

  This is the original polynomial time method.
Conceptually simplest at a high level (but
not at the implementation level) and most
extendable to other problems; nearly linear-
time but not linear-time.



The case of the 1’s
1) For any row i in S, the set of 1 entries in row

i specify the exact set of mutations on the
path from the root to the least common
ancestor of the two leaves labeled i, in every
perfect phylogeny for S.

2) The order of those 1 entries on the path is
also the same in every perfect phylogeny for
S, and is easy to determine by “leaf
counting”.



Leaf Counting

0200022d
2020021c
0001010b
0000101a
7654321

In any column c, count two for each 1, and
count one for each 2.  The total is the number
of leaves below mutation c, in every perfect
phylogeny for S. So if we know the set of
mutations on a path from the root, we know
their order as well.

S

Count   5 4  2  2   1   1   1



Simple Conclusions

Root
The order is
known for the red
mutations
together with the
leftmost blue(?)
mutation.

  1 2 3 4 5 6 7

i:0 1 0 1 2 2 2

Subtree for row i data

2
4

sites

5



But what to do with the
remaining blue entries (2’s) in a

row?



More Simple Tools

3) For any row i in S, and any column c, if
S(i,c) is 2, then in every perfect phylogeny
for S, the path between the two leaves
labeled i, must contain the edge with
mutation c.

     Further, every mutation  c on the path
between the two i leaves must be from
such a column c.



From Row Data to Tree
Constraints

Root  1 2 3 4 5 6 7

i:0 1 0 1 2 2 2

Subtree for row i data

2
4

sites

5 Edges 5, 6 and 7
must be on the blue path,
and 5 is already known to
follow 4, but we don’t
where to put 6 and 7.i

i



The Graph Theoretic Problem

Given a genotype matrix S with n sites, and a
red-blue subgraph for each row i,

create a directed tree T where each 
integer from 1 to n labels exactly one 
edge, so that each subgraph is 
contained in T.i i



Powerful Tool: Tree and Graph
Realization

• Let Rn be the integers 1 to n, and let P be an unordered subset of Rn.
P is called a path set.

• A tree T with n edges, where each is labeled with a unique integer of
Rn, realizes P if there is a contiguous path in T labeled with the
integers of P and no others.

• Given a family P1, P2, P3…Pk of path sets, tree T realizes the family
if it realizes each Pi.

• The graph realization problem generalizes the consecutive ones
problem, where T is a path.

• More generally, each set specifies a fundamental cycle in the unknown
graph.



Tree Realization Example

1

2
4

5

6

3

8

7

P1: 1, 5, 8
P2: 2, 4
P3: 1, 2, 5, 6 
P4: 3, 6, 8
P5: 1, 5, 6, 7

Realizing Tree T

More generally, think of each path set as specifying a fundamental
cycle containing the edges in the specified path.



Graph Realization
   Polynomial time (almost linear-time) algorithms exist for

the graph realization problem, given the family of
fundamental cycles the unknown graph should contain –
Whitney, Tutte, Cunningham, Edmonds, Bixby, Wagner,
Gavril, Tamari, Fushishige, Lofgren 1930’s - 1980’s

  Most of the literature on this problem is in the context of
determining if a binary matroid is graphic.

   The algorithms are not simple.



Reducing PPH to graph
realization

   We solve any instance of the PPH problem by creating
appropriate path sets, so that a solution to the resulting
graph realization problem leads to a solution to the PPH
problem instance.

   The key issue: How to encode the needed subgraph
   for each row, and glue them together at the root.



From Row Data to Tree
Constraints

Root  1 2 3 4 5 6 7

i:0 1 0 1 2 2 2

Subtree for row i data

2
4

sites

5 Edges 5, 6 and 7
must be on the blue path,
and 5 is already known to
follow 4.

i
i



Encoding a Red-Blue directed
path

2

4
5

P1: U, 2
P2: U, 2, 4
P3: 2, 4
P4: 2, 4, 5
P5: 4, 5

2
4

5

U

U is a glue edge used to glue together the directed
paths from the different rows.

forced
In  T



 Now add a path set for the blues
in row i.

Root  1 2 3 4 5 6 7

i:0 1 0 1 2 2 2
2
4

sites

5

i
i

P: 5, 6, 7



That’s the Reduction

The resulting path-sets encode everything that is
known about row i in the input.

The family of path-sets are input to the graph-
realization problem, and every solution to the
that graph-realization problem specifies a solution to
the PPH problem, and conversely.

Whitney (1933?) characterized the set of all solutions to graph
realization (based on the three-connected components of a graph)
and Tarjan et al showed how to find these in linear time.



Topic II: Integer Programming
for NP-hard Phylogenetic (and
Population- Genetic) Problems



Phylogeny problems often have
data with

>  Missing entries
>  Homoplasy
>  Genotype (conflated) sequences, rather than simpler

haplotype sequences

 Most of these problems are NP-hard, although some elegant
poly-time solutions exist (and are well-known) for special
cases.



Question
  Can Integer Programming efficiently solve these problems

in practice on ranges of data of current interest in biology?

We have recently developed ILPs for over twenty such
problems and intensively studied their performance (speed,
size and biological utility). We discuss three such
problems

     here.
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 Classic NASC:  A set of sequences with no
duplicate columns can be generated on a
unique perfect phylogeny if and only if no
two columns (sites) contain all four binary
pairs (gametes):

           0,0 and  0,1 and 1,0 and 1,1

         This is the 4-Gamete or Compatibility Test

Everyone here knows



 A pair of sites that has all four binary pairs is called
 incompatible, otherwise is called compatible.

For M of dimension n by m, the existence of a 
perfect phylogeny, or the test for pairwise compatibility
for M, can be tested in O(nm) time and a
tree built in that time, if there is one. 



Problem M1: Perfect Phylogeny
with Missing Data

 Given binary sequences M with some ? entries, change each
? to

 0 or 1 in order to  minimize the resulting number of
incompatible pairs of sites.

 Special Case (Existence Problem):
  Determine if the ?s can be set to 0, 1so that there are no

resulting incompatibilities. NP-hard in general, but
if the root of the required perfect phylogeny is specified, then the problem

has an elegant poly-time solution (Pe’er, Sharan, Shamir).



Simple ILP for Problem M1
If cell (i,p) in M has a ?, create a binary variable Y(i,p)

indicating whether the value will be set to 0 or to 1.
For each pair of sites p, q that could be made incompatible,

let D(p,q)  be the set of missing or deficient gametes in site
pair p,q, needed to make sites p,q incompatible.

  For each gamete a,b in D(p,q), create the binary variable
B(p,q,a,b),

    and create inequalities to set B(p,q,a,b) to 1 if the Y
variables for cells for sites p,q are set so that gamete a,b is
created in some row for sites p,q.



Example

D(p,q) = {1,1;  0,1}
p q
----
0 0
? 1
1 0
? ?
? 0
0 ?

To set the B variables, the ILP will have inequalities 
for each a,b in D(p,q), one for each row where a,b could be created
in site pair p,q.

For example, for a,b = 1,1 the ILP has:
Y(2,p) <= B(p,q,1,1)      for row 2
Y(4,p) + Y(4,q) -- B(p,q,1,1) <= 1    for row 4



Example continued

D(p,q) = {1,1;  0,1}
p q
----
0 0
? 1
1 0
? ?
? 0
0 ?

For a,b = 0,1 the ILP has:

Y(2,p) + B(p,q,0,1) => 1      for row 2
Y(4,q) -- Y(4,p) -- B(p,q,0,1) <= 0    for row 4
Y(6,q) -- B(p,q,0,1) <= 0    for row 6



The ILP also has a  variable C(p,q) which is set to 1 if
 every gamete in D(p,q) is created at site-pair p,q.

So, C(p,q) is set to 1 if (but not only if) the Y variables for sites p, q
(missing entries in columns p, q) are 
set so that sites p and q become incompatible.

B(p, q, 1, 1) + B(p, q, 0, 1) -- C(p,q) <= 1

In the example:

If M is an n by m matrix, then we have at most nm Y variables; 
2m2  B variables; m2/2 C variables; and O(nm2) inequalities in 
worst-case.



Finally, we have the objective function:

Where P is the set of site-pairs that could be made to be
incompatible.

Empirically, these ILPs solve very quickly (CPLEX 9) in fractions 
of seconds,  or seconds
even for m = n = 100 and percentage of missing values up to 30%.
Data was generated with recombination and homoplasy by the 
program MS and modifications of MS.
Details are in COCOON 2007, Gusfield, Frid, Brown

C(p, q)S
(p,q) in P

Minimize



Extension to non-binary
characters

  We detail the case of three and four allowed
states per character.



What is a Perfect Phylogeny for
non-binary characters?

• Input consists of  n sequences M with m sites (characters) each, where
each site can take one of k states.

• In a Perfect Phylogeny T for M, each node of T is labeled with an m-
length sequence where each site has a value from 1 to k.

• T has n leaves, one for each sequence in M, labeled by that sequence.
• For each character-state pair (C,s), the nodes of T that are labeled with

state s for character C, form a connected subtree of T. It follows that
the subtrees for any C are node-disjoint



Example: A perfect phylogeny
for input M
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n = 5
m = 3
k = 3

(3,2,1)
(2,3,2)

(3,2,3)

(1,2,3)
(1,1,3)

(1,2,3)

(3,2,3)



Example

32 1
3 1 1
3 2 3
23 2
12 3

A   B     C
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M

n = 5
m = 3
k = 3

(3,2,1)
(2,3,2)

(3,2,3)

(1,2,3)
(1,1,3)

(1,2,3)

(3,2,3)

The tree for
State 2 of
Character B



Existence problem for three
states

    Is there a way to set the ?s so there is a 3-state perfect
phylogeny?



Dress-Steel solution for 3-state
Perfect phylogeny given

complete data (1991)
• Recode each site M(i) of M as three binary sites

M’(i,1), M’(i,2), M’(i,3) each indicating the taxa
that have state 1, 2, or 3.

• Theorem (DS) There is a 3-state perfect
phylogeny for M, if and only if there is a binary-
character perfect phylogeny for some subset of M’
consisting of exactly two of the columns

   M’(i,1), M’(i,2), M’(i,3), for each column i of M.
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Compatible subset



ILP for the DS solution
    S(i,1), S(i,2), S(i,3)  are binary variables indicating which

columns of M' associated with column i in M will be
selected. Then we use the inequalities

  S(i,1) + S(i,2) + S(i,3) = 2

  S(i,x) + C(i,x; j,y) + S(j,y) <= 2 etc. for x,y = {1,2,3}, and
  C(i,x;j,y) is the variable (essentially from the M1 ILP) that is

forced to 1 if columns (i,x) and (j,y) in M' are
incompatible.
From the DS theorem, the ILP is feasible if and only if there is a
3-state perfect phylogeny for M.



Now we can extend the DS solution to the  case of missing values:

When there is a ? in cell (p,q) of M,  we use binary variables
Y(p,q,1), Y(p,q,2), Y(p,q,3) to indicate their values in M’, and  add the

equality:

Y(p,q,1) + Y(p,q,2) + Y(p,q,3) = 1
which sets the ? in (p,q) to either 1,2, or 3.

The resulting ILP is feasible if and only if the ?s in M have been
set to allow a 3-state perfect phylogeny.
That solves the Existence Problem for three states per character.

Back to the problem of missing
data



Empirical Results: The 3-state
Existence Problem

50 by 25,
3PP exists

100 by 50
3PP exists 

5%   10%   20%   35%  missing values

 

0%

0.0098   0.3      0.6    1.16   56.0  seconds

0.03      4.0       6.9   13.9   2492.0 seconds

Times for data where no 3-state Perfect Phylogeny exists
were similar, but smaller!



We have also developed efficient ILP solutions for
the Perfect Phylogeny Problem with missing data,
for the case of 4 allowed states, and a different
solution for any arbitrary, but fixed number of
states.



Topic III: Phylogenetic Networks
with Recombination



Recombination: A richer model
than Perfect Phylogeny
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gamete-test. The sites 4, 5
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10100 01011

5

10101

The first 4 sites come from P (Prefix) and the sites
from 5 onward come from S (Suffix).

P S

Sequence Recombination

A recombination of P and S at recombination point 5.

Single crossover recombination



Network with Recombination:
ARG
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A Min ARG for Kreitman’s data

ARG created by
SHRUB



Results on Reconstructing the
Evolution of SNP Sequences

• Part I: Clean mathematical and algorithmic results: Galled-Trees, near-
uniqueness, graph-theory lower bound, and the Decomposition
theorem

• Part II: Practical computation of  Lower and Upper  bounds on the
number of recombinations needed.     Construction of (optimal)
phylogenetic networks; uniform sampling; haplotyping with ARGs;
LD mapping …

• Part III: Varied Biological Applications
• Part IV: Extension to Gene Conversion
• Part V: The Minimum Mosaic Model of Recombination

This talk will discuss topics in Parts I



Problem: If not a tree, then what?

If the set of sequences M cannot be derived on
a perfect phylogeny (true tree) how much
deviation from a tree is required?

We want a network for M that uses a small
number of recombinations, and we want the
resulting network to be as ``tree-like” as
possible.
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Recombination Cycles

• In a Phylogenetic Network, with a
recombination node x,  if we trace two paths
backwards from x, then the paths will
eventually meet.

• The cycle specified by those two paths is
called a ``recombination cycle”.



Galled-Trees

• A phylogenetic network where no
recombination cycles share an edge is called
a galled tree.

• A cycle in a galled-tree is called a gall.
• Question: if M cannot be generated on a

true tree, can it be generated on a galled-tree?



Results about galled-trees
• Theorem: Efficient (provably polynomial-time) algorithm to determine

whether or not any sequence set M can be derived on a galled-tree.

• Theorem: A galled-tree (if one exists) produced by the algorithm
minimizes the number of recombinations used over all possible
phylogenetic-networks.

• Theorem: If M can be derived on a galled tree, then the Galled-Tree is
``nearly unique”.  This is important for biological conclusions derived
from the galled-tree.

Papers from 2003-2007.



 Elaboration on Near Uniqueness
Theorem: The number of arrangements (permutations) of the 
sites on any gall is
at most three, and this happens only if the gall has two 
sites.

If the gall has more than two sites, then the number of
arrangements is at most two.

If the gall has four or more sites, with at least two sites
on each side of the recombination point (not the side of
the gall) then the arrangement is forced and unique.

Theorem: All other features of the galled-trees for M are invariant.



A whiff of the ideas behind the
results



Incompatible Sites

A pair of sites (columns) of M that fail the
4-gametes test are said to be incompatible.

A site that is not in such a pair is compatible.



0 0 0 1 0
1 0 0 1 0
0 0 1 0 0
1 0 1 0 0
0 1 1 0 0
0 1 1 0 1
0 0 1 0 1

1 2 3 4 5
a
b
c
d
e
f
g

1 3

4

2 5

Two nodes are connected iff the pair
of sites are incompatible, i.e,  fail the
 4-gamete test.

Incompatibility Graph G(M)

M

THE MAIN TOOL: We represent the pairwise 
incompatibilities in a incompatibility graph.



The connected components of
G(M) are very informative

• Theorem: The number of non-trivial connected components is a lower-
bound on the number of recombinations needed in any network.

• Theorem: When M can be derived on a galled-tree,  all the
incompatible sites in a gall must  come from a single connected
component C, and that gall must contain all the sites from C.
Compatible sites need not be inside any blob.

•  In a galled-tree the number of recombinations is exactly the number of
connected components in G(M), and hence is minimum over all
possible phylogenetic networks for M.
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Coming full circle - back to
genotypes

   When can a set of genotypes be explained by a set
of haplotypes that derived on a galled-tree, rather
than on a perfect phylogeny?

  Recently, we developed an Integer Linear
Programming solution to this problem, and are

   now testing the practical efficiency of it.
 (Brown, Gusfield).



 Minimizing Recombinations in
unconstrained networks

• Problem: given a set of sequences M,  find a phylogenetic
network generating M, minimizing the number of
recombinations used to generate M, allowing only one
mutation per site. This has biological meaning in
appropriate contexts.

• We can solve this problem in poly-time for the special case
of Galled-Trees.

• The minimization problem is NP-hard in general.



Minimization is an NP-hard
Problem

What we have done:

1. Solve small data-sets optimally with exponential-time methods
or with algorithms that work well in practice;

2. Efficiently compute lower and upper bounds on the number of
needed recombinations.

 3. Apply these methods to address specific
biological and bio-tech questions.


