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DNA Hybridization



Polymerase 
Chain Reaction 

(PCR)
• cell-free method of 

DNA cloning

Advantages
• much faster than cell 

based method
• need very small 

amount of target DNA
Disadvantages
• need to synthesize 

primers
• applies only to short 

DNA fragments(<5kb) 



Preparation of a DNA Library
• DNA library: a collection of cloned DNA fragments
• usually from a specific organism



DNA Library Screening



Problem

• If a probe doesn’t uniquely determine a 
virus, i.e., a probe determine a group of 
viruses, how to select a subset of probes 
from a given set of probes, in order to be 
able to find up to d viruses in a blood 
sample. 



Binary Matrix
viruses

c1 c2 c3 cj cn
p1 0  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 
p2 0  1  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  
p3 1  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  

probes 0  0  1 … 0 … 0 … 0 … 0 … 0 … 0 … 0  
.
.

pi 0  0  0 … 0 … 0 … 1 … 0 … 0 … 0 … 0  
.
.

pt 0  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  

The cell (i, j) contains 1 iff the ith probe hybridizes the jth virus.



Binary Matrix of Example
virus

c1 c2 c3 cj
p1 1  1  1  0  0  0  0  0  0          
p2 0  0  0  1  1  1  0  0  0   
p3 0  0  0  0  0  0  1  1  1  

probes 1  0  0  1  0  0  1  0  0   
0  1  0  0  1  0  0  1  0
0  0  1  0  0  1  0  0  1

Observation: All columns are distinct. 

To identify up to d viruses, all unions of up to d columns should be distinct!



d-Separable  Matrix
_

viruses

c1 c2 c3 cj cn
p1 0  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 
p2    0  1  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  
p3 1  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  

probes 0  0  1 … 0 … 0 … 0 … 0 … 0 … 0 … 0  
.
.

pi 0  0  0 … 0 … 0 … 1 … 0 … 0 … 0 … 0  
.
.

pt 0  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  

All unions of up to d columns are distinct.
Decoding: O(nd)



d-Disjunct Matrix 
viruses

c1 c2 c3 cj cn
p1 0  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 
p2 0  1  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  
p3 1  0  0 … 0 … 0 … 0 … 0 … 0 … 0 … 0  

probes 0  0  1 … 0 … 0 … 0 … 0 … 0 … 0 … 0  
.
.

pi 0  0  0 … 0 … 0 … 1 … 0 … 0 … 0 … 0  
.
.

pt 0  0  0 … 0 … 0 … 0 … 0 …
0 … 0 … 0  

Each column is different from the union of every d other columns
Decoding: O(n)
Remove all clones in negative pools. Remaining clones are all 
positive.
es



Nonunique Probe Selection

• Given a binary matrix, find a d-separable
submatrix with the same number of 
columns and the minimum number of rows. 

• Given a binary matrix, find a d-disjunct
submatrix with the same number of 
columns and the minimum number of rows.

• Given a binary matrix, find a d-separable
submatrix with the same number of 
columns and the minimum number of rows

_



Classical Group Testing Model

• Given n items with some positive ones, 
identify all positive ones by less number of 
tests.

• Each test is on a subset of items.
• Test outcome is positive iff there is a 

positive item in the subset.  



Example 1 - Sequential

1  2  3  4  5 6  7  8 1  2  3  4  5 6  7  8 9

1  2  3   4  5

4     54     5



Example 2 – Non-adaptive

p1 1  2  3 

p2 4  5 6     

p3 7  8  9

p4  p5 p6

O(   ) tests for n itemsn



General Model about 
Nonadaptive Group Testing

• Classical: no restriction on pools.
• Complex model: some restriction on pools
• General model: Given a set of pools, 

select pools from this set to form a d-
separable (d\bar-separable, d-disjunct) 
matrix.  



Minimum d-Separable 
Submatrix

• Given a binary matrix, find a d-separable 
submatrix with minimum number of rows 
and the same number of columns.

• For any fixed d >0, the problem is NP-hard.
• In general, the problem is conjectured to 

be Σ2 –complete.p



d-Separable Test

• Given a matrix M and d, is M d-separable?
• It is co-NP-complete. 



d-Separable Test
_

• Given a matrix M and d, is M d\bar-
separable?

• This is co-NP-complete. 
(a) It is in co-NP. 

Guess two samples from space 
S(n,d\bar). Check if M gives the same test 
outcome on the two samples. 



d-Disjunct Test

• Given a matrix M and d, is M d-disjunct?
• This is co-NP-complete.



Complexity of Sequential Group 
Testing

• Given n items, d and t, is there a group 
testing algorithm with at most t tests for n 
items with at most d positives?

• In PSPACE
• Conjectured to be PSPACE-complete. 



Complexity of Nonadaptive
Group Testing

• Given n items, d and t, is there a t x n d-
separable matrix?

• Given n items, d and t, is there a t x n 
d\bar-separable matrix?

• Given n items, d and t, is there a t x n d-
disjunct matrix? 



Approximation

• Greedy approximation has performance
1+2d ln n

• If NP not= P, then no approximation has 
performance o(ln n)

• If NP  is not contained by DTIME(n^{log 
log n}), then no approximation has 
performance (1-a)ln n for any a > 0. 



Pool Size = 2

• The minimum 1-separable submatrix
problem is also called  the  minimum test 
set (the minimum test cover, the minimum 
test collection).

• The minimum test cover is APX-complete 
(story was complicated).

• The minimum 1-disjunct submatrix is really 
polynomial-time solvable.



Lemma

• Consider a collection C of pools of size at 
most 2. Let G be the graph with all items 
as vertices and all pools of size 2 as 
edges. Then 

• C gives a d-disjunct matrix if and only if 
every item not in a singleton pool has 
degree at least d+1 in G. 
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Theorem

• Min-d-DS is polynomial-time solvable in 
the case that all given pools have size 
exactly 2
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Theorem 2

• Min-2-DS is NP hard in the case that all 
given pools have size at most 2.



Proof

• Vertex-Cover



Theorem 2’

• Min-2-DS is MAX SNP-complete in the 
case that all given pools have size at most 
2.



Lemma 2

• Suppose all given pools have size at most 
2. Let s be the number of given singleton 
pools. Then any feasible solution of Min-d-
DS contains at least s+ (n-s)(d+1)/2 pools. 



Proof
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Step 1

• Compute a minimum solution of the 
following polynomial-time solvable 
problem: Let G be the graph with all items 
as vertices and all given pools of size 2 as 
edges. Find a subgraph H, with minimum 
number of edges, such that every item not 
in a singleton pool has degree at least d+1.



Step 2

• Suppose H is a minimum solution obtained 
in Step 1. Choose all singleton pools at 
vertices with degree less than d+1 in H. All 
edges of H and chosen singleton pools 
form a feasible solution of Min-d-DS.



Theorem 3

• The feasible solution obtained in the 
above algorithm is a polynomial-time 
approximation with performance ratio 
1+2/(d+1).



Proof

• Suppose H contains m edges and k
vertices of degree at least d+1.

• Suppose an optimal solution containing s* 
singletons and m* pools of size 2.

• Then m < m*  and (n-k)-s*< 2m*/(d+1).
• (n-k)+m < s*+m*+ 2m*/(d+1)

< (s*+m*)(1+2/(d+1)).



http://www.amazon.com/gp/reader/9812568220/ref=sib_dp_pt/102-5529567-5344107
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