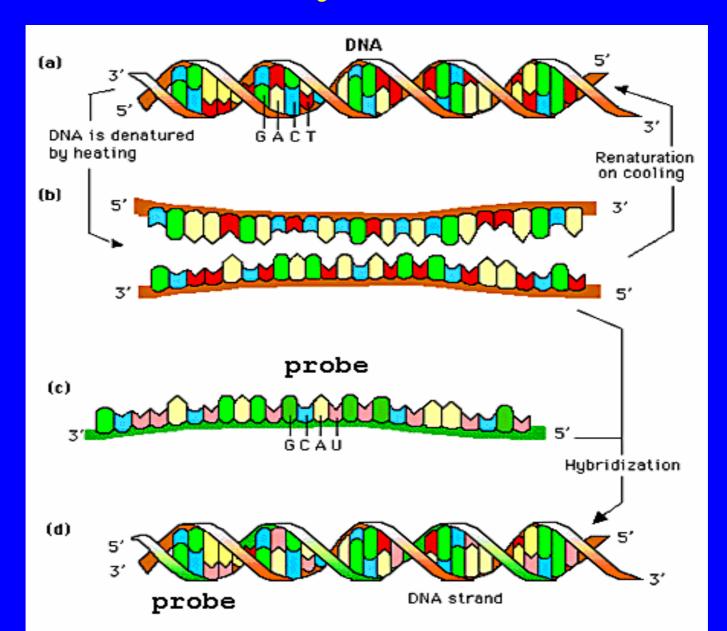
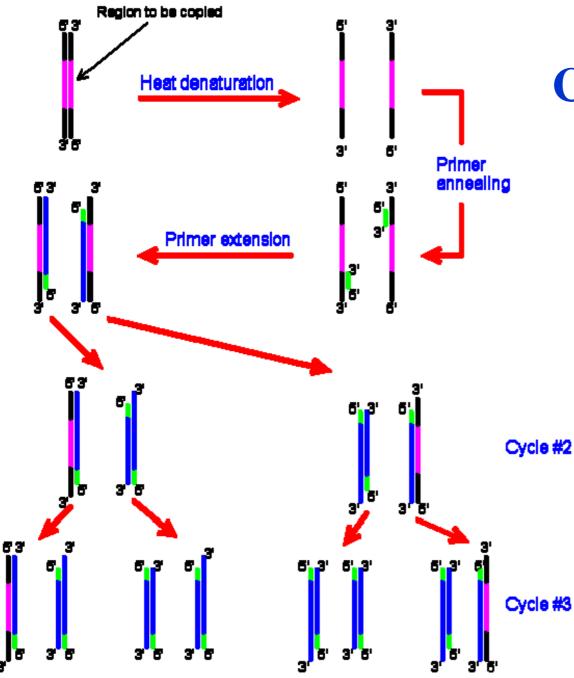
Nonunique Probe Selection and Group Testing Ding-Zhu Du

DNA Hybridization





Polymerase Chain Reaction (PCR)

• cell-free method of DNA cloning

Advantages

- much faster than cell based method
- need very small amount of target DNA

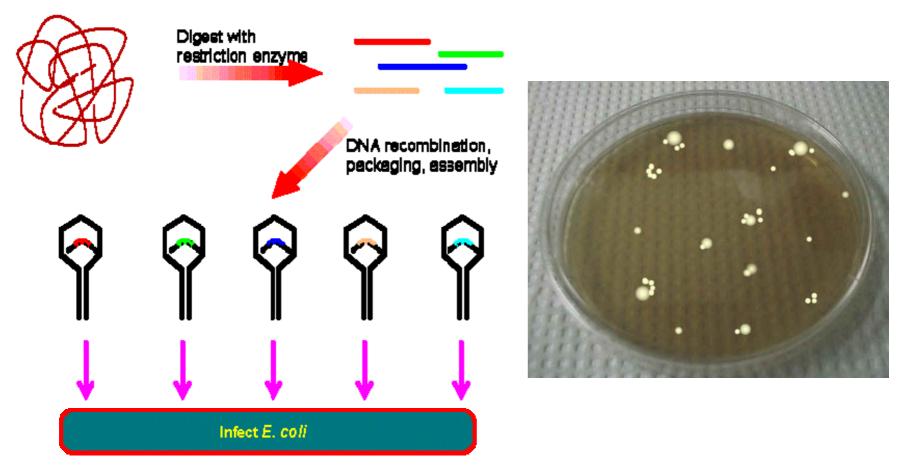
Disadvantages

- need to synthesize primers
- applies only to short DNA fragments(<5kb)

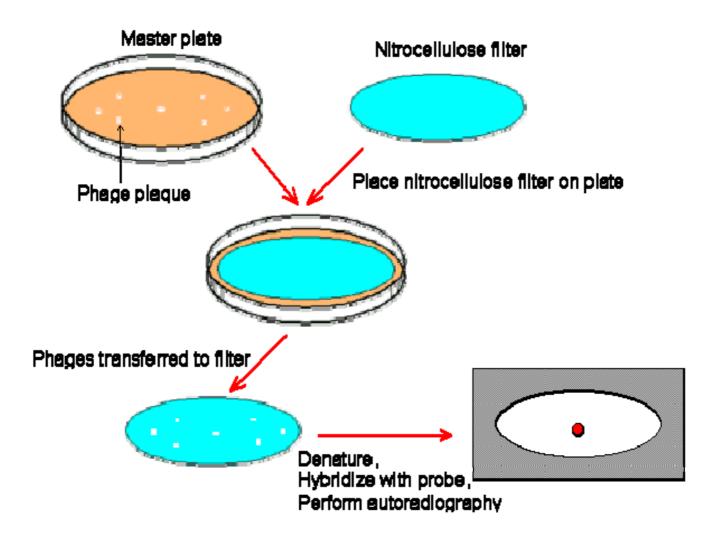
Preparation of a DNA Library

- DNA library: a collection of cloned DNA fragments
- usually from a specific organism

Target CNA



DNA Library Screening

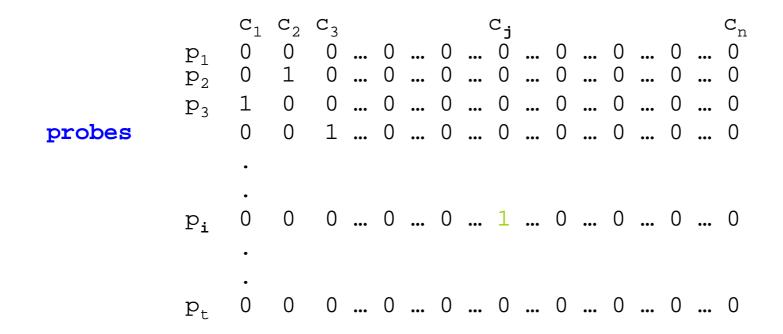


Problem

 If a probe doesn't uniquely determine a virus, i.e., a probe determine a group of viruses, how to select a subset of probes from a given set of probes, in order to be able to find up to *d* viruses in a blood sample.

Binary Matrix

viruses



The cell (*i*, *j*) contains 1 iff the *i*th probe hybridizes the *j*th virus.

Binary Matrix of Example

virus

		C ₁	C_2	C ₃				Cj		
	p_1	1	1	1	0	0	0	0	0	0
	p_2	0	0	0	1	1	1	0	0	0
	p ₃	0	0	0	0	0	0	1	1	1
probes	_	1	0	0	1	0	0	1	0	0
		0	1	0	0	1	0	0	1	0
		0	0	1	0	0	1	0	0	1

Observation: All columns are distinct.

To identify up to *d* viruses, all unions of up to *d* columns should be distinct!

d-Separable Matrix

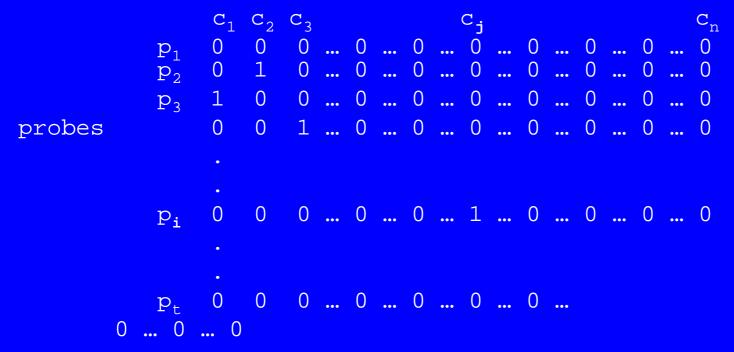
viruses

		C_1	C_2	C ₃					(Cj								Cn
	p_1	0	0	0	0	•••	0	•••	0	•••	0	•••	0	•••	0	•••	0	
	P_2	0	1	0	0	•••	0	•••	0	•••	0	•••	0	•••	0	•••	0	
	p_3	1	0	0	0	•••	0	•••	0	•••	0	•••	0	•••	0	•••	0	
probes		0	0	1	0	•••	0	•••	0	•••	0	•••	0	•••	0	•••	0	
		•																
		•																
	pi	0	0	0	0	•••	0	•••	1	•••	0	•••	0	•••	0	•••	0	
		•																
		•																
	p_t	0	0	0	0	•••	0	•••	0	•••	0	•••	0	•••	0	•••	0	

All unions of up to d columns are distinct. **Decoding:** $O(n^d)$

d-Disjunct Matrix

viruses



Each column is different from the union of every d other columns Decoding: O(n) Remove all clones in negative pools. Remaining clones are all positive.

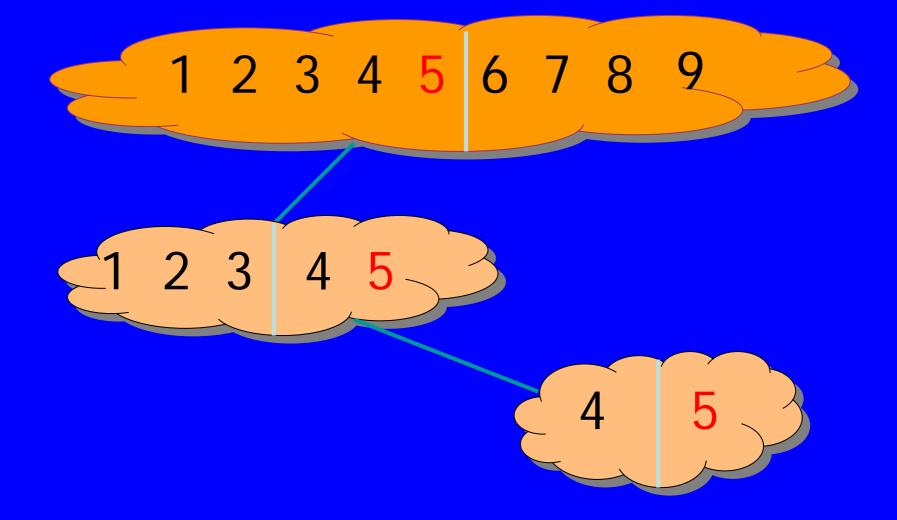
Nonunique Probe Selection

- Given a binary matrix, find a d-separable submatrix with the same number of columns and the minimum number of rows.
- Given a binary matrix, find a d-disjunct submatrix with the same number of columns and the minimum number of rows.
- Given a binary matrix, find a d-separable submatrix with the same number of columns and the minimum number of rows

Classical Group Testing Model

- Given *n* items with some positive ones, identify all positive ones by less number of tests.
- Each test is on a subset of items.
- Test outcome is positive iff there is a positive item in the subset.

Example 1 - Sequential



Example 2 – Non-adaptive

pl	1	2	3
p2	4	5	6
p3	7	8	9
	p4	p5	рб

 $O(\sqrt{n})$ tests for *n* items

General Model about Nonadaptive Group Testing

- Classical: no restriction on pools.
- Complex model: some restriction on pools
- General model: Given a set of pools, select pools from this set to form a dseparable (d\bar-separable, d-disjunct) matrix.

Minimum d-Separable Submatrix

- Given a binary matrix, find a d-separable submatrix with minimum number of rows and the same number of columns.
- For any fixed d >0, the problem is NP-hard.
- In general, the problem is conjectured to be Σ_{2}^{p} -complete.

d-Separable Test

Given a matrix M and d, is M d-separable?
It is co-NP-complete.

d-Separable Test

- Given a matrix M and d, is M d\barseparable?
- This is co-NP-complete.

(a) It is in co-NP.

Guess two samples from space S(n,d\bar). Check if M gives the same test outcome on the two samples.

d-Disjunct Test

Given a matrix M and d, is M d-disjunct?
This is co-NP-complete.

Complexity of Sequential Group Testing

- Given n items, d and t, is there a group testing algorithm with at most t tests for n items with at most d positives?
- In PSPACE
- Conjectured to be PSPACE-complete.

Complexity of Nonadaptive Group Testing

- Given n items, d and t, is there a t x n dseparable matrix?
- Given n items, d and t, is there a t x n d\bar-separable matrix?
- Given n items, d and t, is there a t x n ddisjunct matrix?

Approximation

- Greedy approximation has performance 1+2d ln n
- If NP not= P, then no approximation has performance o(ln n)
- If NP is not contained by DTIME(n^{log log n}), then no approximation has performance (1-a)ln n for any a > 0.

Pool Size = 2

- The minimum 1-separable submatrix problem is also called the minimum test set (the minimum test cover, the minimum test collection).
- The minimum test cover is APX-complete (story was complicated).
- The minimum 1-disjunct submatrix is really polynomial-time solvable.

Lemma

- Consider a collection C of pools of size at most 2. Let G be the graph with all items as vertices and all pools of size 2 as edges. Then
- C gives a d-disjunct matrix if and only if every item not in a singleton pool has degree at least d+1 in G.

Proof

Suppose there exists an item a_0 not in any singleton pool of *C* and its degree in *G* is at most *d*. Let $(a_0,a_1), (a_0, a_2), \dots, (a_0,a_k) (k < d)$ be all edges of *G* at a_0 . Then column with label a_0 is contained in the union of columns with labels a_1, a_2, \dots, a_k . Therefore, *C* does not form a *d* - disjunct matrix.

Conversely, if no such an item a_0 exists, then every item is either in a singleton pool or of degree at least d + 1. In the former case, the singleton pool does not contain any other item, and in the latter case, for any d other items a_1, a_2, \ldots, a_d , there is a pool of size 2 contains a_0 and does not contain anyone of a_1, \ldots, a_d . Hence, C form a d - disjunct matrix.

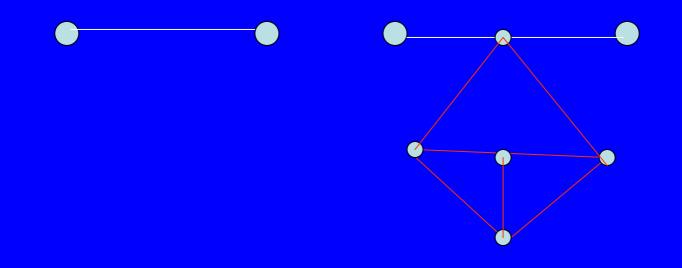
Theorem

 Min-d-DS is polynomial-time solvable in the case that all given pools have size exactly 2

Let *H* be the graph with all items as vertices and all given pools as edges. By Lemma, Min - d - DS is equivalent to find a subgraph G, with minimum number of edges, such that every vertex has degree at least d + 1 in G. It is equivalent to maximize the number of edges in *H*-*G* such that every vertex v has degree at most $d_{H(v)}$ -d-1 in H-G where $d_{H(v)}$ is the degree of v in H. The letter maximization problem has been known to be polynomial - time solvable for a long time.

• Min-2-DS is NP hard in the case that all given pools have size at most 2.

Vertex-Cover



Theorem 2'

Min-2-DS is MAX SNP-complete in the case that all given pools have size at most 2.

Lemma 2

Suppose all given pools have size at most
 2. Let s be the number of given singleton
 pools. Then any feasible solution of Min-d DS contains at least s+ (n-s)(d+1)/2 pools.

Proof

Suppose C is a feasible solution of Min - d - DS. By Lemma 1, every item is either in a singleton pool or in at least d + 1 pools of size 2. Suppose C contains s singleton pools. Then C contains at least s + (n-s)(d+1)/2 pools.

Step 1

 Compute a minimum solution of the following polynomial-time solvable problem: Let G be the graph with all items as vertices and all given pools of size 2 as edges. Find a subgraph H, with minimum number of edges, such that every item not in a singleton pool has degree at least d+1.

Step 2

 Suppose H is a minimum solution obtained in Step 1. Choose all singleton pools at vertices with degree less than d+1 in H. All edges of H and chosen singleton pools form a feasible solution of Min-d-DS.

Theorem 3

 The feasible solution obtained in the above algorithm is a polynomial-time approximation with performance ratio 1+2/(d+1).

Proof

- Suppose H contains m edges and k vertices of degree at least d+1.
- Suppose an optimal solution containing s* singletons and m* pools of size 2.
- Then $m \le m^*$ and $(n-k)-s^* \le 2m^*/(d+1)$.
- $(n-k)+m \le s^*+m^*+2m^*/(d+1)$

< (s*+m*)(1+2/(d+1)).

Series on Applied Mathematics Volume 19

POOLING DESIGNS AND NONADAPTIVE GROUP TESTING

Important Tools for DNA Sequencing

> Ding-Xhu Du Frank K Hwang

World Scientific