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Abstract The so-called mixed feedback loop (MFL) with microRNA is a small two-gene network
where microRNA regulates the translation of mRNA by base pairing with the mRNA. It has been
developed to show that the MFL is a representative motif of genetic regulation networks. The
present paper is mainly concerned with the issues of dynamics for the mixed feedback loop (MFL)
integrated with microRNA. A simple mathematical model of the motif is proposed based on the
biochemical interactions. It is shown that, by itself, this motif can serve both as a monostable
and a bistable switch depending on a kinetic parameter range. The results emphasize the role of
microRNA in the function of genetic modules and the regulation of itself.
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1 Introduction
Biological cells depend on complex networks of biochemical interaction between dif-

ferent molecules [1, 2, 3]. There has recently been increasing interest in the study of
transcription regulation interactions and protein-protein interactions, which in many cases
are involved in post-translational regulation. During the last years, it has become evident
that another type of interaction plays a prominent role in the regulation of cellular pro-
cesses, manifested by microRNA molecules that base pair with the mRNA and regulate
gene expression post-transcriptionally [2]. It is worth noting that this mode of regulation
was found in both pro- and eukaryotes (for review see Storz et al., 2005). Although there
are differences in the characteristics of the eukaryotic and prokaryotic regulatory RNAs
and in the fine-details of their mechanism of action, both exert their regulatory function
mostly by base pairing with the mRNA and influencing translation or mRNA stability [2].
More recently, an analysis of transcriptional networks integrated with post-transcriptional
or post-translational has pointed out several motifs of mixed interactions. Especially, an
over-represented motif with the mixed feedback loop (MFL) is proposed to show that the
role of protein dimerization and the usefulness of modeling mRNA dynamics explicitly
[3]. Here, it is intriguing to study the dynamical properties of this type of motifs with
microRNA in comparison to other type of motifs.

The main objective of this paper is to investigate dynamics of a specific motif with mi-
croRNA. To better understand the possible functions of this basic module, a model of the
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Figure 1: The proposed model of the MFL motif

mixed feedback loop (MFL) based on the simplest biochemical interactions is proposed,
which is a small two-gene network where microRNA regulates the translation of RNA. It
is composed of RNA produced from gene Gm and a transcription factor A translated from
RNA and microRNA produced from gene Gs, and A regulates the transcription of gene Gs
and RNA directly interacts with microRNA. It is shown that, by itself, it can serve both as
a monostable and a bistable switch depending on a kinetic parameter range. The results
emphasize the role of microRNA in the function of genetic modules and the regulation of
itself.

The rest of this paper is organized as follows. Section 2 describes the mathematical
model, Section 3 is the main dynamics results of the model. The conclusion is given in
Section 4.

2 Mathematical Model
2.1 Model formulation

In this paper, we are mainly interested in analyzing dynamics of a specific motif with
microRNA. As previously described, the MFL consists of RNA produced from gene Gm
and a transcription factor A translated by RNA and microRNA produced from gene Gs.
A regulates the transcription of gene Gs and RNA directly interacts with microRNA. Our
aim is to analyze the dynamics of this small genetic module and see what can be achieved
in the simplest setting. Therefore, different cellular compartments and separate concen-
trations for the nucleus and cytoplasm are not considered and biochemical reactions are
modeled by simple rate equations. The proposed MFL model is depicted schematically
in Fig. 1.

The MFL model consists of four equations that are described and explained below.
The concentration of the species Gs, microRNA, RNA and A are denoted by Ng, Ns, Nm
and Np, respectively, and the cell volume is taken as volume unit.

The following three equations model the transcriptional regulation of gene Ns, and the
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interaction of RNA and microRNA.




dNg

dt
= θ [Ng : Np]−βNgNp,

dNs

dt
= ρ f [Ng : Np]+ρbNg−dsNs−αNsNm,

dNm

dt
= gm−dmNm−αNsNm.

(1)

where it is assumed that gene Gs exists under two forms, with A bound to its promoter with
probability [Ng : Np] and without A with probability Ng. Since [Ng : Np]+Ng = 1, the first
equation of (1) is sufficient to describe the transition between the two forms. Specifically,
A proteins bind to the promoter at a rate β , and when bound they are released at a rate
θ . The regulation of transcription of gene Gs by protein A is described by the second
equation. When A is bound to the Gs promoter, the transcription is initiated at a rate ρ f ,
and otherwise, it is initiated at a rate ρb. Thus, ρ f > ρb corresponds to transcriptional
activation by A and ρ f < ρb to transcriptional repression. Since regulation of gene Gm is
not considered it is simply assumed in the third equation that RNA is produced at a given
basal rate gm. The second crucial interaction of the MFL, the direct interaction between
microRNA and RNA is taken into account by assuming that they associate at a rate α . In
addition, a first-order degradations for RNA at a rate dm and microRNA at a rate ds have
also been assumed in the third equation, respectively. As given, the description is strictly
valid for a single copy gene.

The production of the A protein is described by the following equation that complete
our description of the MFL module:

dNp

dt
= gpNm−dpNp +θ [Ng : Np]−βNgNp. (2)

where it is assumed that A proteins are produced from the transcripts of Gm at a rate gp,
and degraded at a rate dp simultaneously. The last two terms of Eq. (2) come from the
(small) contribution to the concentration of A in solution of the binding( unbinding) of A
to (from) the Gs promoter.

As described in Eq. (1), the complexation Nx between RNA and microRNA proceeds
at a rate α , For simplicity, we suppose that the complex Nx does not dissociate back into
their original components. Since the complex Nx does not feed back on the dynamics of
the other species, its concentration does not need to be monitored and the complex Nx is
not explicitly considered in the following.

2.2 Values of kinetic parameters
As is known, even in this simple model, ten kinetic constants should be specified. It is

useful to consider the possible range of their values both to assess the biological relevance
of the different dynamical regimes and to orient the model analysis [3].

Half-lives of RNA range from a few minutes to several hours and are peaked around
20 min in yeast [7]. Therefore, ds = dm = 0.05min−1 can be taken as a typical value.

For the transcription factor-gene promoter interaction, typical values appear to be a
critical concentration θ

β = A0 in the nanomolar range, a bound state lifetime of several
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minutes and activated transcription rates per minute. Therefore, we assume θ
β = 40, that

θ is of the same order as dm [3]. ρ f and ρb range from 5min−1 to 500min−1, since the
production rate of RNA range from 0.1min−1 to 10min−1 [6] and the production rate of
microRNA is 50 times faster than that of RNA [2].

Protein half-lives vary from a few minutes to several days. The hour appears as a
typical value [3]. We choose dP = 0.01min−1 and gp = 3min−1. RNA is produced at
a given basal rate gm and the rate value range from 0.1 molecule min−1 to 10 molecule
min−1. The rate constants for binding of microRNA to RNA was taken as α = 10min−1.

It is convenient to introduce dimensionless variables in Eqs. (1) and (2) to decrease as
far as possible the number of independent parameters. For this reason, we first normalize
the microRNA concentration by the concentration that gives a production of RNA equal
to microRNA. Thus, we define the dimensionless concentration G = Ng,P = Np, S = Ns

gm
,

and define M = Nm
gm

. With the four substitutions, Eqs. (1) and (2) can be rewritten as





dG
dt

= θ(1−G−G
P
A0

),

dS
dt

= ρ0(1−G)+ρ1G−dsS− γMS,

dM
dt

= 1−dmM− γMS,

dP
dt

= δM−dpP+θ(1−G−G
P
A0

).

(3)

where we have defined the following parameters ρ0 = ρ f
gm

, ρ1 = ρb
gm

,γ = αgm and δ = gpgm.
The model still depends on eight parameters. The influence of two key parameters ρ0 and
ρ1, which measure the strengths of the two possible states of microRNA production (with
or without A bound to gene Gs as compared to that of RNA is particularly examined in
the following.

3 Dynamical Regimes
We provide here several dynamical regimes of the MFL with microRNA in different

parameter regimes, and summarize their characteristics. It have observed that depending
on the values of ρ0 and ρ1, the MFL can be monostable, and exhibit bistability.

3.1 Monostable steady states
The simplest case occurs when the production rate of microRNA is higher or lower

than the production rate of RNA, irrespective of the state of the Gs promoter. That is when
both ρ f and ρb are either higher or lower than gm, the MFL has a single stable state to
which it relaxes starting from any initial conditions.

When both microRNA production rates are higher than the production rate of RNA
(i.e.ρ0 > 1 and ρ1 > 1) and the RNAs are quickly paired with microRNA and are unable
to translate proteins which interact with Gs promoter. The concentration RNA of unpaired
with microRNA is, therefore, low and results from a simple balance between production
and complexation. The high concentration of uncomplexed microRNA is the effective
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result from transcription at the free promoter rate, complexation, and degradation.

Ns ∼= ρb−gm

ds
, Nm ∼= gm

αNs
. (4)

An equally simple but opposite result holds when both microRNA production rates
are lower than the production rate of RNA (i.e., ρ0 < 1 and ρ1 < 1 ), Then, the concen-
tration of uncomplexed RNA is high, the Gs promoter is occupied by proteins A which
is translated by uncomplexed RNA and a low concentration microRNA results from a
balance between complexation and production.

Ns ∼= ρ f

αNm
, Nm ∼= gm−ρ f

dm
. (5)

The dynamics of the MFL with microRNA is richer when the production RNA is
intermediate between the two possible production rates of microRNA. We consider the
case when ρb > gm > ρ f (i.e., ρ0 < 1 < ρ1) in turn.

3.2 Transcriptional repression and bistability
When protein A is a transcriptional repressor, then two stable steady states can coexist.

Let us first suppose that no A is bound to the Gs promoter. Then the production rate of
microRNA is larger than the production rate of RNA, and all produced RNA are so quickly
paired with microRNA not to translate protein A. This stably prevents the binding of A
proteins to the Gs promoter and maintain a steady state with low RNA and high microRNA
concentrations approximately equal to

N1
s
∼= ρb−gm

ds
, N1

m
∼= gm

αN1
s
. (6)

The second opposite possibility is that A is sufficiently abundant to repress the tran-
scription of gene Gs. Then, since the production rate of RNA has been supposed to
be higher than the production rate of microRNA in the repressed state, microRNAs are
quickly paired but unpaired RNA are present and translate protein A to maintain the re-
pression of the gene Gs transcription. This gives rise to a second stable state with high
RNA and low microRNA concentrations approximately equal to

N2
s
∼= ρ f

αN2
m

, N2
m
∼= gm−ρ f

dm
. (7)

We provide here a more detailed analysis on the second case of the MFL as follows.
It can be observed that the free gene, microRNA and A protein concentrations are given
in a steady state as a function of the concentration of RNA.





G =
A0

A0 +M δ
dp

,

S =
ρ1A0 +ρ0M δ

dp

(A0 +M δ
dp

)(ds + γM)
,

P = M
δ
dp

.

(8)
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Thus, the concentration of RNA itself satisfies the following equation:

ρ1A0 +ρ0M δ
dp

(A0 +M δ
dp

)(ds + γM)
γ +dmM = 1. (9)

This leads to

(ρ1a+ρ0M)M
(a+M)(b+M)

+dmM = 1, (10)

where a = dpA0
δ ,b = ds

γ .

In order to simplify above analysis, it is useful to note that b is a small parameter
(approximately equal to 3×10−3 with respect to the previous estimations when gm is set
properly). For b = 0, we can obtain a solution M2 ∼= a(ρ1−1)

1−ρ0
. For sufficient small b, two

other steady states are possible. A steady state with a small concentration of M,M1 ∼= b
ρ1−1

exists when ρ1 > 1. Inversely a steady state with a large concentration of M, M3 ∼= 1−ρ0
dm

exists when ρ0 < 1.
Obviously, Eq. (10) is equivalent to the following one:

dmM3 +(adm +bdm +ρ0−1)M2 +(abdm +aρ1−a−b)M−ab = 0. (11)

Note that the MFL with microRNA may have multiple (i .e three) fixed points only if Eq.
(11) has three different positive roots. It is easy to see that if the following conditions are
satisfied: 




ρ0 < 1− (adm +bdm)

ρ1 > 1+(
b
a
−bdm)

(12)

which implies that ρ0 < 1 and ρ1 > 1.
Eq. (3) is solved by numerical integration starting from suitable initial conditions

directly. Two concerns are discussed below:

The high S state.

We show that the state with a high concentration of S is stable. In this case, M and P
quickly reach their quasiequilibrium concentration. Let s = S γdp

δ , M and P reach on a fast
time scale their quasiequilibrium concentration:

M ∼= dp

δ s
, p∼= 1

s
. (13)

Therefore, the dynamics of MFL with microRNA reduces to the following two equations:




dG
dt

= θ(1−G),

ds
dt

=
γdp

δ
[ρ0(1−G)+ρ1G]−dss− γdp

δ
.

(14)
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It clearly show that the high S fixed point is stable and the concentrations tend toward
those of the high S fixed points;

G∼= 1, s =
γdp
δ (ρ1−1)

ds
, M ∼= 0, P∼= 0. (15)

This steady state exists only if ρ1 > 1, and the production of microRNA is high enough
to pair with RNA and to prevent RNA traslating the transcriptional repressor protein A.

The high M state.
The high M state can be analyzed in a very similar way based on the fact that the

microRNA and RNA quickly reach quasiequilibrium states. However, both of them can-
not be in quasiequilibrium at the same time. For instance, when M À S, only S reaches
its quasiequilibrium. When M and P concentration are high at all, and we set p = dpP

A0
,

m = dmγM
ρ0

, G and S reach on a fast time scale their quasiequilibrium state:

G∼= dp

p
, S∼= dm

m
. (16)

Therefore, the dynamics of MFL with microRNA reduces to the following two equations:




dm
dt

=
dmγ
ρ0

−dmm−dmγ,

d p
dt

= ηm−dp p.
(17)

Let η = dpρ0δ
dmA0γ , It can be from Eq. (17) seen that the high M fixed point is stable and, as

found above, satisfies

G∼= 0, S∼= 0, m∼= γ(1−ρ0)
ρ0

, p∼= ηm
dp

. (18)

This steady state is possible only if ρ0 < 1,that is when the S production rate is not high
enough to prevent translation by M and to prevent the repression by P.

4 Conclusions
In this paper, we have investigated the issues of dynamics for the mixed feedback loop

(MFL) integrated with microRNA. A simple model of such motif is proposed based on
the biochemical interactions. The analysis shows that, by itself, this motif can serve both
as a monostable and a bistable switch depending on a kinetic parameter range. The results
emphasize the role of microRNA in the function of genetic modules and the regulation of
itself.
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Figure 2: Time evolution of the concentrations of M and S respectively. Parameter are the
same as that in Sec. 2. i.e., ρ f =5 min−1, ρb=30 min−1 and gm=10 mol min−1. The left
one : high S; The right one: high M.
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