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Abstract In this paper, the concept of generalized saddle point(GSP) is employed to discuss the
optimization problems of a set of convex functions on a normed linear space X , which presents
an equivalence under a special condition between GSP and its optimum solution. A study on in-
tegrated convex optimization problem by using Gâteaux and Fréchet differentiability respectivly,
and the equivalent relationships among GSP, Gâteaux and Fréchet differentiability respectively, and
optimum solution are concerned in this paper.
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1 Introduction
It is well known that convex optimization in Banach space has been much interested

by people because of its wide range of application in mathematics and engineering. The
book written by Th. Precupanu and Viorel Barbu [1] shows that convexity is very essen-
tial and useful in optimization theories. The characterization theorems of the theory of
best approximation, given in the book written by Ivan singer [2], can be generalized to
convex optimization. It shows the relationship between best approximation and convex
optimization in locally convex space using subdifferentials and directional derivatives.
The content of best approximation and optimization also can be found in [8]. Nonlinear
optimization in normed linear spaces has been discussed by S. Y. Xu [3], but not in depth.

In this paper, concept of generalized saddle point (GSP) introduced by J. Li [12]
is employed to study the relationship between integrated optimum solution of a set of
convex function on a normed linear space and the GSP, i.e., the equivalence under a
special condition. Integrated convex optimization in normed linear space is still studied
by employing the Gâteaux and Fréchet differentiability, and relationship between GSP
and optimum solution is also concerned in this paper.

The rest of this paper is organized as follows. Section 2 presents a study on integrated
convex optimization problem (Γ,G) by using the tools of Gâteaux and Fréchet differen-
tiability respectivly. In section 3, we integrated the content of section 2 with the concept
of the generalized saddle point to discuss the equivalence between optimum solution and
the GSP.
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2 Integrated Optimization Problem in Normed Linear
Space

Assume X be a normed linear space, and X∗ dual space of X , namely, the set of
all the linear functional on X , and H be a set of convex real-valued functions φs on X ,
i.e., φ : X → R, where R is the real number field. We define Γ = sup

φ∈H
φ , that is to say,

Γ(x) = sup
φ∈H

φ(x), x ∈ X . Let G be a subset of X , we concern optimization problem

(Γ,G) : inf
g∈G

Γ(g).

Let g0 ∈ G, if it satisfies Γ(g0) = inf
g∈G

Γ(g), then we call g0 be an optimum solution of

(Γ,G), all of which are denoted as a set P(Γ,G), namely,

P(Γ,G) = {g0 ∈ G : Γ(g0) = inf
g∈G

Γ(g)}.

Let B∗ = { f ∈ X∗ : || f ||X∗ ≤ 1} (the unit ball of X∗), and || · ||X and || · ||X∗ be the
norms of X and X∗ respectively, of which all the concepts can be found in [10,16] . When
φ is defined as φ(·) = | f (x−·)|, where x ∈ X , f ∈ B∗ , the optimization problem (Γ,G)
can be changed to be

inf
g∈G

Γ(g) = inf
g∈G

sup
f∈B∗

| f (x−g)|= inf
g∈G

||x−g||X ,

which, in fact, is the best approximation of x by the elements of G, which has been
investigated in many literatures and books such as [2, 4, 5, 6, 7, 8, 11] etc..

We have known that Γ(x) is a convex function on X [12]. It is well known that convex
function on X is continuous, so is the function Γ(x). Now we introduce the following
notations for conciseness of the discussion.

M(Γ,x) = {φ ∈ H : Γ(x) = φ(x), x ∈ X}

U(x0,δ ) = {x : ‖x− x0‖< δ , x ∈ X}

G̃g0 =
⋃

g∈G

{gα : gα = (1−α)g0 +αg, α ∈ [0,1],g0 ∈ G},

Definition 1. We call φ to be Fréchet differentiable [14] at x0 if there exists a fx ∈ X∗
such that

lim
‖h‖→0+

|φ(x0 +h)−φ(x0))− fx0(h)|
‖h‖ = 0

for all h ∈ X , and its Fréchet derivative is denoted by ∂φ(x0,h), namely ∂φ(x0,h) =
fx0(h).

In a more familiar case, φ : Rn → Rm, the derivative ∂φ is simply the Jacobian of φ .
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Definition 2. Assume x0 ∈ X , φ ∈M(Γ,x0), we call φ be a locally maximal function of Γ
at x0, if there exists a positive real number δ , such that φ(x) = Γ(x) for any x ∈U(x0,δ ) .

It is evident to see that when φ is a locally maximal function of Γ at x0, we know there
exists a positive real number δ , such that φ ∈M(Γ,x) for any x ∈U(x0,δ ).

On the basis of the above discussion, it is evident to know the following lemma.

Lemma 1. Assume h ∈ X, φ0 ∈ M(Γ,x0), if φ0 is a locally maximal function of Γ and
Fréchet differentiable at x0, then Γ(·) is also Fréchet differentiable at x0 and ∂Γ(x0,h) =
∂φ(x0,h).
Definition 3. Assume x0,h ∈ X , φ0 is called to be Gâteaux differentiable [15,2,16] at x0
if the limit

φ ′0(x0,h) = lim
α→0

φ0(x0 +αh)−φ0(x0)
α

exists for h ∈ X , and φ ′0(x0,h) is called the Gâteaux derivative at x0 with respect to incre-
ment h.

For conciseness of the discussion, we introduce the following lemma which is easy to
obtain.

Lemma 2. Assume h ∈ X, φ0 ∈ M(Γ,x0), if φ0 is a locally maximal function of Γ and
Gâteaux differentiable at x0 with respect to h, then Γ(·) is also Gâteaux differentiable at
x0 with respect to increment h and Γ′(x0,h) = φ ′(x0,h).

It is well known that the concept of fréchet derivative is stronger than that of the
Gâteaux derivative, namely if ∂φ(x0,h) exists, then φ ′(x0,h) is necessary to exist.

Theorem 3. Assume there exists a φ0 ∈ M(Γ,g0) which is locally maximal function of Γ
and Fréchel differentiable at g0, then g0 ∈ P(Γ,G) if and only if

∂φ0(g0,g−g0)≥ 0 (1)

for any g ∈ G.

Proof. Assume g0 ∈ P(Γ,G), then Γ(g)≥ Γ(g0). Because there exists a φ0 ∈M(Γ,g0) which
is a locally maximal function of Γ and Fréchel differentiable at g0, Γ(·) is also Fréchel
differentiable at g0 by lemma 1, that is to say, for an arbitrary positive number ε , there
exists a δ > 0, we get that when ‖g−g0‖< δ ,

∂φ0(g0,g−g0)− ε‖g−g0‖ ≤ Γ(g)−Γ(g0)≤ ∂φ0(g0,g−g0)+ ε‖g−g0‖, (2)

which implies φ0(g0,g−g0)≥ 0 by the right inequality of (2) .

Conversely, assume that there exists a φ0 ∈M(Γ,g0) satisfying

∂φ0(g0,g−g0)≥ 0.

When ∂φ0(g0,g−g0) = 0, we can obtain Γ(g) = Γ(g0) for all g∈G by using the inequal-
ity (2). If ∂φ0(g0,g−g0) > 0, there exists an ε > 0 such that ∂φ0(g0,g−g0)≥ ε‖g−g0‖,
which implies that

Γ(g)−Γ(g0)≥ ∂φ0(g0,g−g0)− ε‖g−g0‖ ≥ 0

by the Fréchel differentiability of φ0 at g0.
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Definition 4. We say that g0 is a sun-point (also see [3]) of Γ in G , if g0 ∈ P(Γ,G) implies
g0 ∈ P(Γ,G̃g0 ), where P(Γ,G̃g0 ) is the optimum solution set of optimization problem (Γ, G̃g0).
If every point g ∈ G is a sun-point of Γ , we refer G to be a sun-set of Γ.

Sun point plays an important role in nonlinear best approximation which has been
introduced by Efimov and Stechkin [13], and were concerned in many literatures, some
of which have been collected in the monograph written by Braess [5].

Let

γ(t) =
φ(g0 + t(g−g0))−φ(g0)

t
, ∀t ∈ (0,1],

where φ is a convex function. For conciseness of the narration, we give a lemma which is
easily obtained.

Lemma 4. Let φ is a convex function, then γ(t) is an increasing function on (0,1]

Theorem 5. Assume G is a sun-set of Γ and there exists a φ0 ∈M(Γ,g0) which is a locally
maximal function of Γ and Gâteaux differentiable at g0, then g0 ∈ P(Γ,G) if and only if

φ ′0(g0,g−g0)≥ 0

for all g ∈ G.

Proof. Assume that there exists a φ0 ∈M(Γ,g0) which is a locally maximal function of Γ
and Gâteaux differentiable at g0. We get there exists a δ > 0, such that

Γ(g) = φ0(g) ∀g ∈U(g0,δ ),

and

φ ′0(g0,g−g0) = lim
t→0+

φ0(g0 + t(g−g0))−φ0(g0)
t

,

which implies

φ ′0(g0,g−g0) = lim
t→0+

Γ(g0 + t(g−g0))−Γ(g0)
t

, (3)

through employing lemma 2. By the assumption that G is a sun-set of Γ and g0 ∈ P(Γ,G),
we have Γ(g0 + t(g−g0))≥ Γ(g0), 0 < t ≤ 1, which infers

φ ′0(g0,g−g0)≥ 0

by the equality (3). This is end of the proof of necessity of the theory.

Conversely, if φ ′0(g0,g−g0)≥ 0, where φ0 ∈M(Γ,g0), which is locally maximal func-
tion of Γ at g0. We have known that Γ(x) is a convex function on normed linear space X ,
hence

γ(t) =
Γ(g0 + t(g−g0))−Γ(g0)

t
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is an increasing function on (0,1] by Lemma 4. Consequently we get γ(1)≥ limt→0+ γ(t),
namely

Γ(g)−Γ(g0)

≥ lim
t→0+

Γ(g0 + t(g−g0)−Γ(g0)
t

= φ ′0(g0,g−g0)≥ 0,

which implies that g0 ∈ P(Γ,G).

3 Generalized Saddle Point Solution of (Γ,G)
Let X be a normed linear space, H̃ be a set of all real-valued and convex functions on

X . Now we define a functional Ψ : (H̃,X)→ R, that is

Ψ(φ ,x) = φ(x), ∀(φ ,x) ∈ (H̃,X).

Let H be a subset of H̃, and G be a subset of X , we also define

Γ(x) = sup
φ∈H

φ(x) = sup
φ∈H

Ψ(φ ,x),

then the optimization problem (Γ,G) changes to be

inf
g∈G

Γ(g) = inf
g∈G

sup
φ∈H

Ψ(φ ,g).

Definition 5. Let (φ̄ , ḡ) ∈ (H,G), we call (φ̄ , ḡ) a generalized saddle point (GSP) of Ψ
in (H,G), if it satisfies the following condition

Ψ(φ , ḡ)≤Ψ(φ̄ , ḡ)≤Ψ(φ̄ ,g), (φ ,g) ∈ (H,G).

The concept of GSP had been introduced in [12]. The notion of saddle point is a
fundamental concept in many areas of science and economics. A classical instance is the
famous saddle point theorem for a zero-sum matrix game due to J. Von Neumann and O.
Morgenstern [9].

Theorem 6. Let φ̄ ∈M(Γ,ḡ) be Gâteaux differentiable at ḡ , then (φ̄ , ḡ) is a GSP of Ψ in
(H,G) if and only if

φ̄ ′(ḡ,g− ḡ)≥ 0, g ∈ G.

Proof. Assume (φ̄ , ḡ) is a GSP of Ψ in (H,G), we have

Ψ(φ , ḡ)≤Ψ(φ̄ , ḡ)≤Ψ(φ̄ ,g),

namely
φ(ḡ)≤ φ̄(ḡ)≤ φ̄(g). (4)

Therefor, by the inequality (4) and convexity of φ̄ , we can get
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φ̄ ′(ḡ,g− ḡ) = lim
α→0+

φ̄(ḡ+α(g− ḡ))− φ̄(ḡ)
α

≥ lim
α→0+

(1−α)φ̄(ḡ)+αφ̄(g)− φ̄(ḡ)
α

= lim
α→0+

α[φ̄(g)− φ̄(ḡ)]
α

= φ̄(g)− φ̄(ḡ)≥ 0.

Conversely, we assume that φ̄ ′(ḡ,g− ḡ)≥ 0. Let

γ(α) =
φ̄(ḡ+α(g− ḡ))− φ̄(ḡ)

α
,

where α ∈ (0,1]. When φ is a convex function, γ(α) is an increasing function on (0,1]
by virtue of Lemma 4. Consequently we have γ(1)≥ lim

α→0+
γ(α), which implies

φ̄(g)≥ φ̄(ḡ) (5)

Furthermore,
φ(ḡ)≤ sup

φ∈H
φ(ḡ) = φ̄(ḡ), (6)

because of φ̄ ∈M(Γ,ḡ). By the inequalities (5)(6), we have

Ψ(φ , ḡ)≤Ψ(φ̄ , ḡ)≤Ψ(φ̄ ,g), (φ ,g) ∈ (H,G).

It is obvious to know the following corollary from theorem 5 and 6,

Corollary 7.
Let G be a sunset of Γ, and φ̄ ∈M(Γ,ḡ) be a locally maximal function and Gâteaux differ-
entiable at ḡ , then the following statements are equivalent,

(1) ḡ ∈ P(Γ,G);
(2) (φ̄ , ḡ) is GSP of Ψ in (H,G);
(3) φ̄ ′(ḡ,g− ḡ)≥ 0, g ∈ G.

Now we discuss the relation between GSP and Fréchet differentiability in the follow-
ing,

Theorem 8. Let φ̄ ∈M(Γ,ḡ) be Fréchet differentiable at ḡ, then (φ̄ , ḡ)) is a GSP of Ψ in
(H,G), if and only if

∂ φ̄(ḡ,g− ḡ)≥ 0, g ∈ G.
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Proof. Assume φ̄ ∈ M(Γ,ḡ) to be Fréchet differentiable at ḡ, then there exists a fḡ ∈ X∗
such that

lim
‖h‖→0+

|φ̄(ḡ+h)− φ̄(ḡ))− fḡ(h)|
‖h‖ = 0 (7)

for any h ∈ X . Let h = g− ḡ, by the equality (7), we have that for any ε > 0 there exists a
δ > 0, when g ∈U(ḡ,δ )∩G such that

fḡ(g− ḡ)− ε‖g− ḡ‖ ≤ φ̄(g)− φ̄(ḡ)≤ fḡ(g− ḡ)+ ε‖g− ḡ‖. (8)

We know that
φ(ḡ)≤ φ̄(ḡ)≤ φ̄(g) (9)

by the assumption of (φ̄ , ḡ)) being a GSP of Ψ in (H,G). Hence we can have

fḡ(g− ḡ)≥ 0

which is established from the second inequalities of (8) ,(9), and the arbitrariness of ε ,
which, furthermore, implies ∂ φ̄(ḡ,g− ḡ)≥ 0,g ∈ G.

On the other hand, from the assumption ∂ φ̄(ḡ,g− ḡ)≥ 0,g∈G, and the left inequality
of (8), the inequality

φ̄(ḡ)≤ φ̄(g) (10)

is obviously obtained. Moreover, as a result of φ̄ ∈M(Γ,ḡ), we get

φ(ḡ)≤ sup
φ∈H

φ(ḡ) = φ̄(ḡ). (11)

Integrating (10) with (11),
φ(ḡ)≤ φ̄(ḡ)≤ φ̄(g)

is established, which infers that (φ̄ , ḡ) is a GSP of Ψ in (H,G).

It is obvious to know the following corollary by theorem 3 and 8,

Corollary 9.
Let φ̄ ∈ M(Γ,ḡ) be a locally maximal function and Fréchet differentiable at ḡ , then the
following statements are equivalent,

(1) ḡ ∈ P(Γ,G);
(2) ∂ φ̄(ḡ,g− ḡ)≥ 0, g ∈ G;
(3) (φ̄ , ḡ) is GSP of Ψ in (H,G).

From the proofs of the above theorems, we realize that the optimum solution of (Γ,G)
is equivalent to Fréchet differentiability , but not true to Gâteaux differentiability without
G being a sunset of Γ, which displays that Fréchet differentiability is stronger than that
of Gâteaux. But the condition that G is a sun set of Γ is not necessary in the proofs of
theorem 6 and 8.
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