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Abstract This paper presents a global optimization algorithm for handling disjoint multi-linear
optimization programs arising in computational decision analysis when imprecise information pre-
vails. We make use of an existing cutting plane method, namely, the polar cut, and the disjoint
structural property to develop a new approach that is different from the traditional class of branch
and bound methods.

1 Introduction
Most classical decision analysis approaches consist of a set of straightforward de-

cision rules applied to precise estimates of probabilities and/or utilities no matter how
unsure a decision maker is of his estimates. The requirement for numerically precise data
has been considered unrealistic by an increasing number of researchers and decision-
makers. In attempting to address real-life decision problems, a representation of impre-
cise information seems important. Despite a number of ambitious theories suggested,
comparatively few have addressed the issues about computationally feasible algorithms
for evaluating the decision structure [4, 5, 6, 7, 11, 14].

To evaluate a decision situation, many approaches are built upon the principle of max-
imizing the expected utility (PMEU) because it has been shown that both these and some
other approaches have performances which are at best equal to that of the PMEU and
at worst are significantly poorer [9]. Therefore, to improve PMEU, it should be sup-
plemented with other qualitative rules rather than engaging in further modifications in
pursuit of a reasonable rule [4]. However, using PMEU may lead to disjoint multi-linear
programming (DMLP) problems with special structural properties when imprecise infor-
mation prevails. In general, DMLP is computationally hard to solve. But for an interactive
decision making process, it is necessary to develop an efficient computational procedure
for solving such programs.

This paper intends to discuss the computational aspects of DMLP arising in the eval-
uation of an imprecise decision model by using PMEU and extend the work in [7]. The
following section presents an imprecise decision framework that can be transformed into a
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DMLP program. The third and fourth sections discuss the corresponding local and global
optimization strategies for solving DMLP, respectively. The final section concludes this
paper.

2 An Imprecise Decision Model
For simplicity, we will not go into relevant details of the representation and evaluation

of a general decision situation, interested readers are encouraged to pursue [4] and the
references therein.

Suppose we have an alternative represented as a decision tree
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Figure 1: A Multi-linear Decision Model

To calculate the expected utility of alternative1 with point values seems rather straight-
forward. It can be derived as

p11(p21(p31u1 + p32u2)+ p22(p33u3 + p34u4))+ p12(p23u5 + p24u6)
= p11 p21 p31u1 + p11 p21 p32u2 + p11 p22 p33u3 + p11 p22 p34u4
+p12 p23u5 + p12 p24u6

(1)

As imprecise information such as interval statements prevails [4, 5], we have various
types of imprecise statements within each level that can be translated into linear con-
straints. It should be noted that currently we only allow constraints from the same level
rather than different levels. For example, the interval statement 0.2 ≤ p21 + p23 ≤ 0.3 is
considered proper, while the interval statement 0.2 ≤ p11 + p23 ≤ 0.3 is considered im-
proper since p11 and p23 are from level 1 and level 2, respectively, and this will destroy
the disjoint structural property.

To evaluate alternative1 by using PMEU with imprecise information, we are supposed
to compute two extreme values, i.e., maximum and minimum, of (1) subject to disjoint
linear constraints in order to receive a range of expected utility for alternative1. This will
result in a special case of DMLP that is intrinsically hard to solve. If we take xi = pi =
(pi1, . . . , pini)

′, i = 1, . . . ,n, and xn+1 = (u1, . . . ,unu)
′, the imprecise decision model of (1)

can be transformed into DMLP as
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min f (x1, . . . ,xn+1) = ∑T
t=1 ∏ j∈Jt y j

s.t. Xi = {xi ∈ Rni : Aixi ≤ bi,xi ≥ 0}, i = 1, . . . ,n+1
(2)

where Jt denotes the index set, and we can have at most one decision variable from xi
for each Jt . Therefore, for each product term, at most one decision variable from xi
occurs. This property of the objective function and the disjoint linear constraint sets, Xis,
demonstrate the disjoint property of DMLP.

DMLP is in fact a global optimization issue because of its non-convexity, and thereby
requires a local optimization strategy and a global optimization strategy, which automati-
cally switch between refinement and exploration [10].

Before we start, a key solution property of DMLP has to be stated. Suppose each Xi
is nonempty and bounded, the global solution of DMLP must consist of the basic feasible
points of Xis. This important solution property can be derived from [8].

3 Local Optimization
Given a DMLP program, we first need a local optimization strategy that can quickly

locate a local optimum and then use a global optimization strategy to escape the located
optimum.

On the basis of its solution property, we can have the following algorithm for the local
optimization phase of DMLP.

Algorithm 1:

(a). Find feasible extreme points x̃1
i ∈ Xi, i = 1, . . . ,n.

(b). [1] Solve: min{ f (x̃1
1, . . . , x̃

1
n,xn+1)|xn+1 ∈ Xn+1}, to yield x̃1

n+1;
[2] Solve: min{ f (x1, x̃1

2, . . . , x̃
1
n+1)|x1 ∈ X1}, to yield x̃2

1;
[3] Solve: min{ f (x̃2

1,x2, x̃1
3, . . . , x̃

1
n+1)|x2 ∈ X2}, to yield x̃2

2;
...
[n+1] Solve: min{x̃2

1, . . . , x̃
2
n−1,xn, x̃1

n+1)|xn ∈ Xn}, to yield x̃2
n;

Set x̃1
i ← x̃2

i , i = 1, . . . ,n, and repeat (b) until it converges to a solution (x1, . . . ,xn+1).
(c). Suppose xn+1 is non-degenerate, and for each xi, i = 1, . . . ,n, let x̂n+1 ∈ NXn+1(xn+1)

be such that
f (x1, . . . ,xi−1, x̂i,xi+1, . . . ,xn, x̂n+1)
= minxi∈Xi f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn, x̂n+1)
< f (x1, . . . ,xn+1).

Go to (b) with x̃1
i ← xi, i = 1, . . . , i−1, i+1, . . . ,n, and x̃1

i ← x̂i.
(d). Terminate with (x1, . . . ,xn+1) as a local solution.

In Algorithm 1, NXn+1(x) denotes the set of extreme points in Xn+1 that are adjacent
to x, and each step only involves linear programming (LP) operations. The derived local
solution has been proved to be a KKT point [8]. Intuitively, such a solution acts as a local
solution in Xk

n+1 and a global solution in Xi, i = 1, . . . ,n.

Disjoint Multi-linear Optimization in Imprecise Decision Analysis 453



4 Global Optimization
Given a local solution derived by Algorithm 1, we need to generate a cutting plane

so as to cut off this local solution and obtain the global optimality. Here we employ the
deepest cut, i.e., the polar cut [15, 16].

For simplicity, we present the basic idea about the generation of a polar cut with
respect to disjoint bilinear programming (DBLP). For an overview about DBLP, please
refer to [1].

In general, DBLP can be stated as

min f (x,y) = ctx+dty+ xtCy
s.t. X0 = {x ∈ Rn1 : A1x≤ b1,x≥ 0},

Y0 = {y ∈ Rn2 : A2y≤ b2,y≥ 0}.
For a DBLP program, let x be an extreme point of X0 and let x j, j ∈ N, be the n1 non-

basic variables at x, where N is the index set for non-basic variables. Barring the degener-
ate case and denoting by a j the columns of the simplex tableau in extended form, then X0
has precisely n1 distinct edges incident to x. Each half line ξ j = {x : x = x− a jλ j,λ j ≥
0}, j ∈ N, contains exactly one such edge [3].

Definition: The generalized reverse polar of Y0 for a given scalar α is given by Y0(α) =
{x : f (x,y)≥ α} for all y ∈ Y0.

Let (x,y) be a local solution derived by some optimization method like Algorithm 1,
let ξ j be defined as above, let α be the current best objective value (CBOV) of DBLP, and
let λ j be defined by

{
max{λ j : f (x−a jλ j,y)≥ α for all y ∈ Y0} if ξ j 6⊂ Y0(α)

−max{λ j : f (x+a jλ j,y)≥ α for some y ∈ Y0} if ξ j ⊂ Y0(α)

Then ∑ j∈N x j/λ j ≥ 1 determines a valid cutting plane, and we denote by H+(x) the
positive half-space defined by ∑ j∈N x j/λ j ≥ 1.

To generate a polar cut, when ξ j 6⊂ Y0(α), the modified Newton method requires
around three LP operations to obtain λ j [15]. We present herein another approach based
on the LP duality theory, which costs only one LP iteration.

Consider DBLP and the first line of λ j, in which we need obtain

max{λ j : f (x− e jλ j,y)≥ α|A2y≤ b2,y≥ 0}=
max{λ j : miny[ct(x−a jλ j)+dty+(x−a jλ j)tCy]≥ α

|A2y≤ b2,y≥ 0}
Using LP duality theory, the foregoing can be rewritten as

454 The 7th International Symposium on Operations Research and Its Applications



max{λ j : maxu[ct(x−a jλ j)+bt
2u]≥ α

|At
2u≤ d +Ct(x−a jλ j),u≤ 0}=

max{λ j : minu[cta jλ j−bt
2u]≤ ctx−α

|Cta jλ j +At
2u≤Ctx+d,u≤ 0}

⇐⇒
max(λ j ,u) λ j

s.t.
[

cta j −bt
2

Cta j At
2

][
λ j
u

]
≤

[
ctx−α
Ctx+d

]
,u≤ 0.

Therefore, we can obtain λ j when ξ j 6⊂ Y0(α) by solving just one LP program. The
cutting plane method for solving DBLP is built upon the traditional polar cut and its neg-
ative extension [15, 16]. For the case when ξ j 6⊂ Y0(α), the new method based on the LP
duality theory to generate λ j can be applied. As for the case when ξ j ⊂Y0(α), namely, for
the computation of its negative extension, we still employ the modified Newton method.

Now we are ready to develop the generalized cutting plane method for solving DMLP
by taking advantage of its disjoint property.

Algorithm 2:

(a). Let CBOV, ob j0 = +∞, let the initial best feasible solution {(x̂0
1, . . . , x̂

0
n+1)}= /0, and

set the iteration number k = 1.
(b). If Xk

n+1 = /0, terminate with ob jk−1 as the global minimum and (x̂k−1
1 , . . . , x̂k−1

n+1) as its
corresponding global solution.

(c). Find a local solution by using Algorithm 1 with Xn+1 ← Xk
n+1, and set ob jk =

min{ob jk−1, f (xk
1, . . . ,x

k
n+1)};(x̂k

1, . . . , x̂
k
n+1) = argmin{ob jk−1, f (xk

1, . . . ,x
k
n+1)}.

(d). Compute λ jXi with respect to Xi for all j ∈ N, i = 1, . . . ,n.
(e). If either there exists no λ jXi such that ξ j 6⊂ Xi(ob jk), i = 1, . . . ,n; or there exists λ jXi

such that ξ j 6⊂ Xi(ob jk) but also exists λ jXi = 0 such that ξ j ⊂ Xi(ob jk), i = 1, . . . ,n,
terminate with ob jk as the global minimum and (x̂k

1, . . . , x̂
k
n+1) as its corresponding

global solution.
(f). Let λ j = min{λ jXi} for all j ∈ N, i = 1, . . . ,n, generate a polar cut, and let Xk+1

n+1 =
Xk

n+1∩H+(xk
n+1).

(g). Set k = k +1, and return to (b).

In Algorithm 2, Nk
n+1 is either the original feasible when k = 1, or the reduced feasible

after we introduce some polar cuts in kth iteration when k 6= 1. It is in step (d) that we
compute λ js in order to generate either a traditional polar cut or its negative extension
depending on whether ξ j 6⊂ Xi(ob jk) is satisfied. The convergence proof of Algorithm 2
can be derived from the work in [16].

5 Conclusions
The proposed approach for dealing with DMLP incurred by imprecise decision analy-

sis takes advantage of the disjoint structural property in local optimization and polar cuts
in global optimization. It appears to be a different approach from the popular class of
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branch and bound methods, e.g., [12, 13], which are designed for solving either multi-
linear or multiplicative programs. Therefore, we need a further investigation in its com-
putational performance against other counterparts.

Another interesting topic seems to be the generation of a polar cut with respect to
a degenerate solution. The approach that incorporates disjunctive cuts seems relatively
expensive [15]. Hence, it is necessary to investigate the performance of other possible
approaches [2, 3].
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