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Abstract It is impossible to test a VLSI chip for malfunction by exhaustively checking all the
states that the chip can assume. So a chip is usually checked by some mechanism of random
sampling. In this paper, we are concerned with the use of linear CA, i.e. hybrids of rules 90 and
150 CA, for generating random test patterns to test VLSI chips. If the number of cells of 90/150
CA is n, the maximum possible period of the output sequence of any cell is 2n-1. It is also known
that the output sequence of any cell of a maximum-period CA is the same as the output sequence
of another cell of the same CA except the phase shift. Since the output sequences of all the cells
are used in parallel as random test patterns, it is important that the phase shift between any pair of
output sequences is sufficiently large. This paper reports the computational results of the search for
such CA’s as well as the cross correlations of any pair of output sequences.

1 Introduction
Since millions of gates are integrated into a VLSI chip, it is impossible to test a chip

for malfunction by exhaustively checking all the states that the chip can assume. So a
chip is usually checked by some mechanism of random sampling. It is natural to include
a testing mechanism into a chip in order to shorten the time required for test procedures.
This method of testing is called “built-in self-test” (BIST). When we include a random
pattern generator into a VLSI chip, it is desirable to make the area that the generator takes
as compact as possible. In this respect, considerable interest has recently developed in
the use of cell automata (CA) for BIST. In this paper, we are concerned with the use of
linear CA, i.e. hybrids of rules 90 and 150 CA. If the number of cells of 90/150 CA is n,
the maximum possible period of the output sequence of any cell is 2n-1, and a method of
designing maximum-length 90/150 CA was proposed by Tezuka and Fushimi [7] in 1994.
It is also known that the output sequence of any cell of such CA is the same as the output
sequence of another cell of the same CA except the phase shift. The output sequences of
all the cells are used in parallel as test stimuli in BIST. So it is important that the phase
shift between any pair of output sequences is sufficiently large. This paper reports the
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computational results of the search for such CA’s as well as the cross correlations of any
pair of output sequences.

2 90/150 Cellular Automata Sequences
We consider an n-cell 90/150 cellular automaton (CA) with null boundary conditions.

Let the state of the k-th cell at discrete time t be denoted by xk(t). Then the state transition
of the CA is described by the following recurrence:

xk(t +1) = xk−1(t)+ ckxk(t)+ xk+1(t)(mod 2),1≤ k ≤ n,

where ck=0 or 1, and x0(t) = xn+1(t) = 0 for any t. In matrix notation, this can be written
as a state transition equation over the Galois field GF(2)

X(t +1) = AX(t)

where X(t) = (x1(t),x2(t), ...,xn(t)) is a column vector, and the state transition matrix A
is tridiagonal with c1,c2, ...,cn as main diagonal and 1’s as subdiagonal elements. It is
well known that the sequence attains the maximum possible period 2n− 1 if and only if
the characteristic polynomial of A

pn(x) = det(xI +A)

is primitive over GF(2), where I is the identity matrix of order n. Hereafter we consider
only such maximum-period 90/150 CA’s.

It is also known that the output sequences of all the cells of such a CA are the same
as the linear feedback shift register (LFSR) sequence generated by pn(x) except the phase
shifts. Methods of computing these phase shifts with respect to the output sequence of
the 1-st cell have been proposed by several authors, e.g. [2,6]. Using these methods, we
can compute phase shifts between any pair of cells, and then find the minimum among all
these phase shifts, which we call the minimum spacing (MS). In order to use the vector
sequence X(t) as the test stimuli for BIST of VLSI, it is desirable that its MS is big
enough. Fushimi et al. [3] tries to find the configuration of CA with maximum MS for
various numbers of cells. Specifically, they list the optimal configuration for each n in the
range 17 ≤ n ≤ 24, and the configuration with the maximum MS among 1000 randomly
chosen configurations for each n in the range 25 ≤ n ≤ 32. The optimal configurations
found by them are shown in Table 1.

3 Correlations among Output Sequences of Different Cells
The autocorrelation function of any LFSR sequence over the whole period is known

to be similar to the autocorrelation function of white noise, i.e. the correlation value is
almost equal to 0 unless the phase shift is a multiple of the period. On the other hand,
the autocorrelation function of an LFSR sequence over a partial period is not known
theoretically and must be computed numerically if it is needed. When we use the vector
sequence X(t) as the test stimuli, we usually do not use the sequence over the whole
period, and it is very important to compute the correlations among output sequences of
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Table 1: Data for Optimal Configurations and Computing Correlations
degree
n

diagonal elements of A MS length
of a
block

no. of
blocks

17 1000 1101 1001 0000 1 2,787 2,787 1
18 1010 1100 0101 0000 01 4,657 4,657 1
19 1010 0111 1001 1111 101 9,205 9,205 1
20 1000 1010 1100 0001 0101 20,523 20,523 1
21 1000 1011 1101 0110 1010 1 33,843 33,843 1
22 1011 1111 1011 1111 0100 01 73,913 73,913 1
23 1011 1110 1100 1110 1111 101 152,389 50,796 3
24 1010 1100 1101 1000 1111 0101 224,094 56,023 4
25 1010 0000 1111 1000 1101 0010 1 288,967 57,793 5
26 1000 1111 0111 0111 1001 1111 01 382,874 54,696 7
27 1010 1000 0000 0101 0000 0100 001 494,737 49,473 10
28 1010 1101 1100 1101 1111 0001 1101 1,548,576 103,238 15
29 1010 1101 1100 1101 0111 1111 0010 1 1,748,427 116,561 15
30 1010 0011 0111 0101 0101 1111 1000 01 3,453,738 115,124 30
31 1010 1000 1001 0000 1100 0101 1010 001 10,697,022 200,000 50
32 1000 1000 1010 0100 1100 1100 1011 0001 7,822,043 156,440 50

different cells over a partial period. Thus we have performed extensive computations for
all CA sequences listed in Table 1. For a sequence with very large MS, we divided MS
into several blocks with equal length and computed correlations for each block. Table 1
shows the number of such blocks and their length for each sequence. The correlations
over a partial period depend, of course, on the initial vector X(0), and we have chosen
several initial patterns for X(0) as follows:

1. random bit patterns
2. all 1’s
3. the central component (when n is odd) or one of the central components (when is n

even) is 1 and all the other components are 0’s

Table 2 shows, as an example, the correlations for case 3 with n = 17, where italicized
figures indicate absolute values of negative correlations.

It is clear that all the cross correlations are negligibly small. No significant differences
were observed among the computational results for different initial patterns, so that the
tables of the correlations for the other initial patterns are omitted. It has also turned out
that there are no significant differences among the computational results for the blocks
with the same n shown in Table 1. Table 3 shows the maximum (in absolute value) cross
correlations for case 3) for the first block for every n shown in Table 1.

4 Conclusion
We have shown the optimal configurations of 90/150 cell automata for generating

random patterns to test VLSI chips. They are optimal in the sense that the minimum phase
difference among the output sequences of all the cells is maximum. We have performed
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Table 2: An example of correlations among output sequences of cells.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.04 0.01 0.01 0.01 0.02 0.01 0.00
2 1.00 0.01 0.02 0.00 0.03 0.01 0.02 0.02 0.04 0.02 0.03 0.03 0.02 0.00 0.02 0.01
3 1.00 0.01 0.00 0.03 0.01 0.03 0.01 0.03 0.02 0.00 0.02 0.01 0.01 0.02 0.04
4 1.00 0.01 0.02 0.00 0.03 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02
5 1.00 0.00 0.02 0.02 0.02 0.03 0.00 0.01 0.01 0.01 0.01 0.02 0.01
6 1.00 0.01 0.00 0.03 0.01 0.02 0.04 0.01 0.00 0.02 0.00 0.04
7 1.00 0.02 0.03 0.00 0.01 0.00 0.00 0.02 0.02 0.01 0.02
8 1.00 0.00 0.01 0.00 0.03 0.01 0.01 0.01 0.00 0.01
9 1.00 0.00 0.03 0.03 0.01 0.03 0.01 0.01 0.00
10 1.00 0.01 0.02 0.02 0.01 0.00 0.02 0.02
11 1.00 0.02 0.01 0.01 0.02 0.00 0.03
12 1.00 0.02 0.02 0.00 0.01 0.01
13 1.00 0.01 0.01 0.01 0.02
14 1.00 0.03 0.02 0.01
15 1.00 0.01 0.01
16 1.00 0.01
17 1.00

Table 3: The maximum (in absolute value) cross correlations for the first block. Italicized
figures indicate negative correlations.

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.043 0.05 0.029 0.02 0.015 0.01 0.01 0.011 0.012 0.012 0.017 0.095 0.097 0.081 0.007 0.07

extensive computations to check the cross correlations of output sequences of all the cells,
and verified they are negligibly small in all the cases. This research was supported by
Nanzan University Pache Research Subsidy I-A-2 for the 2008 academic year.
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