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Abstract We establish new necessary and sufficient optimality conditions for optimization prob-
lems. In particular, we establish tractable optimality conditions for the problems of minimizing a
weakly convex or concave function subject to standard constraints, such as box constraints, binary
constraints, and simplex constraints. Our main theoretical tool for establishing these optimality
conditions is abstract convexity.
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1 Introduction
We study optimality conditions for some classes of global minimization problems.

References [1]-[3] and [6, 7, 12], etc. study global optimality conditions for the problems
with quadratic objective function subject to either box constraints, binary constraints,
quadratic constraints, or linear constraints. In the present paper, we follow the approach
of references [2, 3, 9, 12, 13], where abstract convexity is used in order to obtain new
optimality conditions for global optimization problems. These optimality conditions are
expressed in terms of abstract subdifferential (L-subdifferential) and abstract normal cone
(L-normal cone). The present paper extends the existing optimality conditions to the
necessary and sufficient optimality condition for a general global optimization problem:

(P) min
x∈U

f (x), where f : Rn → R∪{+∞},U ⊂ dom f .

This necessary and sufficient condition given in this paper is expressed in terms of (ε ,L)-
subdifferential and (ε ,L)-normal set (see Theorem 1), which extends classical results ex-
pressed in terms of ε-subdifferential and ε-normal cone in the sense of convex analysis
for concave minimization problems, which can be found in [1, 11] (see Corollary 3.1).

Our analysis allows us to obtain some tractable optimality conditions for the classes
of problems where the objective function is a weakly convex or concave function subject
to arbitrary constraint set. A function f is a weakly convex (or concave ) function if
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and only if it can be represented as the sum of a quadratic function and a convex (or
concave) function. These classes of functions are broad enough ( see Section 4). So
it always not easy to get some tractable global optimality conditions for weakly convex
(or concave) problems. Reference [13] gives some sufficient conditions for some special
classes of weakly convex programming problems. The present paper gives more stronger
sufficient optimality conditions for general weakly convex problems, which extends the
results given in [13]. The present paper also gives some necessary optimality conditions
for general weakly concave problems (see Theorem 13), which are new results given in
this paper.

The lay-out of the paper is as follows. Section 2 provides a necessary and sufficient
condition in terms of (ε,L)-subdifferential and (ε,L)-normal set. Some sufficient and/or
necessary conditions in terms of L-subdifferential and L-normal cone are also presented
in Section 2. Section 3 provides sufficient global optimality conditions for the class of
problems where the objective function a weakly convex function. Section 4 provides
necessary optimality conditions for the class of problems where the objective function is
a weakly concave function.

We use the following notation:
Rn is the n-dimensional Euclidean space;
Rn

+ is the n-dimensional non-negative Euclidean space, i.e., Rn
+ := {(x1, . . . ,xn) ∈ Rn |

xi ≥ 0, i = 1, . . . ,n};
〈u,v〉 stands for the inner product of vectors u and v;
Sn is the set of symmetric n×n matrices;
Diag(q) is a diagonal matrix with the diagonal q;
Aº B means that the matrix A−B is positive semidefinite.
∂ f (x) and ∂ε f (x) are the subdifferential and ε-subdifferential respectively of a convex
function f at a point x in the sense of convex analysis.
NU (x) and Nε

U (x) are the normal cone and ε-normal set respectively of a convex set U at
a point x in the sense of convex analysis.

2 Necessary and sufficient conditions for global optimal-
ity

In this section we first give some preliminaries from abstract convexity (see [5, 8, 10]).
Let X be a set and H be a set of functions h : X → R. Let L be a set of functions defined
on Rn. For a function f :Rn →R∪{+∞} and a point x̄ ∈ dom f = {x ∈Rn : f (x) < +∞}
define L-subdifferential ∂L f (x̄) of f at x̄ by

∂L f (x̄) = {l ∈ L : f (x)≥ f (x̄)+ l(x)− l(x̄), ∀x ∈ Rn}.

For ε ≥ 0, define (ε,L)-subdifferential ∂ε,L f (x̄) of f at x̄ by

∂ε,L f (x̄) = {l ∈ L : f (x)≥ f (x̄)+ l(x)− l(x̄)− ε, ∀x ∈ Rn}.

Obviously, ∂L f (x̄)⊂ ∂ε,L f (x̄), for any ε ≥ 0.
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Let U ⊂ Rn and let x̄ ∈U . The L-normal set and the (ε,L)−normal set of U at x̄ are
defined as follows:

NL,U (x̄) = {l ∈ L : l(x)≤ l(x̄), ∀x ∈U}

and
Nε

L,U (x̄) = {l ∈ L : l(x)≤ l(x̄)+ ε, ∀x ∈U}.
If L is a cone, that is, (l ∈ L,λ > 0) =⇒ (λ l ∈ L) then NL,U (x̄) is also a cone. Since the
set L we consider is always a subspace(in particular, a cone), we will use the usual term L-
normal cone instead of L-normal set. Properties of (ε,L)-subdifferential (L-subdifferential)
and (ε,L)-normal set (L-normal set) have been investigated in ([4, 8]).

L-subdifferentials ((ε,L)-subdifferentials) and L-normal cones ((ε,L)-normal sets)
are main tools for deriving global optimality conditions for a global minimizer. In other
words

L̄ :=
{

l : l =
1
2
〈Qx,x〉+ 〈β ,x〉 with Q = Diag(q); q,β ∈ Rn

}
. (1)

We call L̂ the subset of L̄ which consists of functions l(x) = α‖x‖2 + 〈β ,x〉 with α ∈ R.
We now give a necessary and sufficient global optimality condition with

(ε ,L)-subdifferential and (ε ,L)-normal set for the following general global optimization
problem (P), which extends the necessary and sufficient global optimality conditions
given with ε-subdifferential of convex functions and ε-normal set of convex sets for con-
cave minimization problems (see [1, 11]):

(P) minimize f (x) subject to x ∈U,

where f : Rn → R∪{+∞} and U ⊂ dom f = {x ∈ Rn : f (x) < +∞}.

Theorem 1. Let L be a subspace of real-valued functions defined on Rn. Let x̄ ∈ U.
Suppose that − f is HL-convex on U. Then x̄ is a global minimizer of problem (P) if and
only if

∂ε,L(− f )(x̄)⊂ Nε
L,U (x̄), ∀ε > 0, (2)

where

HL = {l(x)+ c | l ∈ L,c ∈ R}. (3)

Here we give a necessary and sufficient global optimality condition for the general
optimization problem (P) in terms of (ε,L)-subdifferentials and (ε,L)-normal set. If U is
convex and f (x) is concave on U , then the following results which can be found in [1, 11]
can be reduced from Theorem 1.

Corollary 2. Let x̄ ∈U. Suppose that U is a convex set and f is a concave function on
U. Then x̄ is a global minimizer of problem (P) if and only if

∂ε(− f )(x̄)⊂ Nε
U (x̄), ∀ε > 0. (4)
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Remark 1. From Theorem 1, we can also obtain the following results:
Let L be a subspace of real-valued functions defined on Rn. Let x̄ ∈U.
(i). If x̄ is a global minimizer of problem (P), then

∂ε,L(− f )(x̄)⊂ Nε
L,U (x̄), ∀ε ≥ 0; (5)

(ii). If for any x ∈U, ∂L(− f )(x) 6= /0, then x̄ is a global minimizer of problem (P) if
and only if (5) holds.

Indeed, from the first part of the proof of Theorem 1 (for the necessary condition),
we know that if x̄ is a global minimizer of problem (P), then (5) holds, where − f does
not require to be HL-convex on U . Since ∂L(− f )(x) 6= /0, ∀x ∈ U implies that − f is
HL-convex on U , (ii) can be obtained directly from Theorem 1.

In general, it is very difficult to calculate the (ε,L)-subdifferential and the (ε,L)-
normal set for general function f and general set U , and even if − f and U are convex, it
is also very difficult to calculate the ε-subdifferential and the ε-normal set in the sense of
convex analysis. But, for some kinds of functions f and for some kinds of sets U , we can
calculate the L-subdifferential and the L-normal cone. The following simple results will
be useful in the sequel.

Corollary 3. (Necessary Condition) Let L be a subspace of real-valued functions defined
on Rn. Let x̄ ∈U. If x̄ is a global minimizer of problem (P), then

∂L(− f )(x̄)⊂ NL,U (x̄). (6)

The following sufficient condition has been presented in [2, 3], which study sufficient
conditions for quadratic functions over binary or/and box sets.

Proposition 4. (Sufficient Condition) Let L be a subspace of real-valued functions de-
fined on Rn. Let x̄ ∈U. If (−∂L f (x̄)

)∩NL,U (x̄) 6= /0 (7)

then x̄ is a global minimizer of problem (P).

Corollary 3 and Proposition 4 imply that
(−∂L f (x̄)

)∩NL,U (x̄) 6= /0 =⇒ ∂ε,L(− f )(x̄)⊂ Nε
L,U (x̄),∀ε > 0.

Generally, there is a gap between the sufficient condition (7) and the necessary con-
dition (6). But in some cases, both of (7) and (6) are necessary and sufficient conditions.
In Section 7, we will see that if f is a quadratic function, then the sufficient condition (7)
and the necessary condition (6) are equivalent in some sense.

Proposition 5. Let L be a subspace of real-valued functions defined on Rn, x̄ ∈U. If
f ∈ L, then

(
−∂L f (x̄)

)
∩NL,U (x̄) 6= /0 ⇐⇒ − f ∈ NL,U (x̄) ⇐⇒ ∂L(− f )(x̄)⊂ NL,U (x̄). (8)

Condition (8) means that if f ∈ L, both of (7) and (6) are necessary and sufficient
conditions.
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3 Sufficient Conditions for Weakly Convex Problems
Consider problem

(P1) minimize f (x) subject to x ∈U,

where U ⊂ dom f ,

f (x) =
1
2
〈A0x,x〉+ p(x), (9)

with A0 ∈ Sn and p is a proper convex function.

Proposition 6. Let f be a function defined by (9). Let x̄ ∈ dom p, the domain of p. Then

∂L̄ f (x̄)⊃ {l ∈ L̄ | l(x) =
1
2
〈Qx,x〉+ 〈β ,x〉 : A0−Qº 0,(Q−A0)x̄+β ∈ ∂ p(x̄)}. (10)

Corollary 7. Let f (x) = 1
2 〈A0x,x〉+ 〈a0,x〉 be a quadratic function. Then

∂L̄ f (x̄) = {l ∈ L̄ | l(x) =
1
2
〈Qx,x〉+ 〈β ,x〉 : A0−Qº 0,β = a0 +(A0−Q)x̄}.(11)

Theorem 8. Let U ⊂ Rn and x̄ ∈U. If

[SC1] ∃q, b∈Rn such that A0 ºDiag(q), b−A0x̄∈ ∂ p(x̄) and − lq,b,x̄ ∈NL̄,U (x̄).

Then x̄ is a global minimizer of problem (P1).

Corollary 9. Let f be a quadratic function, f (x) = 1
2 〈A0x,x〉+ 〈a0,x〉. If

[SCQ1] ∃q ∈ Rn such that A0 º Diag(q), b = a0 +A0x̄ and − lq,b,x̄ ∈ NL̄,U (x̄),

then x̄ is a global minimizer of problem (P1). Furthermore,

[SCQ1] ⇐⇒
(
−∂L̄ f (x̄)

)
∩NL̄,U (x̄) 6= /0.

We can obtain tractable sufficient conditions if the normal cone NL̄,U (x̄) can be easily
calculated, in particular, if U is one of the following sets, then we have the following
results:

Corollary 10. Let U = ∏n
i=1{ui,vi} and x̄ ∈U. If there exist q,b ∈ Rn such that A0 º

Diag(q) and

b−A0x̄ ∈ ∂ p(x̄) and X̂b≤ 1
2

Diag(q)(v−u),

where

x̂i : =





0 if x̄i = ui = vi
−1 if x̄i = ui
1 if x̄i = vi

X̂ : = Diag(x̂1, . . . , x̂n) (12)

and v = (v1, . . . ,vn),u = (u1, . . . ,un), then x̄ is a global minimizer of problem (P1).
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Corollary 11. Let U = {x = (x1, . . . ,xn) : ui ≤ xi ≤ vi} and x̄ ∈U. If there exist q,b ∈Rn

such that A0 º Diag(q) and

b−A0x̄ ∈ ∂ p(x̄) and X̃bb≤ 1
2

Q−(v−u)},

where

x̃i(b) : =





0 if x̄i = ui = vi
−1 if x̄i = ui < vi
1 if x̄i = vi > ui
bi if x̄i ∈ (ui,vi)

X̃b : = Diag(x̃1(b), . . . , x̃n(b)) (13)

and v = (v1, . . . ,vn),u = (u1, . . . ,un), then x̄ is a global minimizer of problem (P1).

Corollary 12. Let U = co{v1, . . . ,vk},k ≤ n + 1 be a simplex in Rn and x̄ ∈U. If there
exist q,b ∈ Rn such that A0 º Diag(q), b−A0x̄ ∈ ∂ p(x̄) and

max
i=1,...,k

h−q,b(vi)≤min
x∈U

h+
q,b(x), (14)

then x̄ is a global minimizer of problem (P).

4 Necessary Conditions for Weakly Concave Problems
Consider the problem

(P2) minimize f (x) subject to x ∈U,

where U ⊂ dom f , f (x) = 1
2 〈A0x,x〉+ p(x), with A0 ∈ Sn and p is a proper concave func-

tion.
A function f is called to be a weakly concave function if − f is a weakly convex

function.

Theorem 13. Let U ⊂ Rn, x̄ ∈U. If x̄ is a global minimizer of problem (P2), then

[NC1] − lq,b,x̄ ∈ NL̄,U (x̄) for any q,b ∈Rn with Diag(q)º A0,A0x̄−b ∈ ∂ (−p)(x̄),

where

lq,b,x̄(x) :=
1
2

n

∑
i=1

qix2
i +

n

∑
i=1

bixi−
n

∑
i=1

qix̄ixi =
1
2
〈Qx,x〉+ 〈b−Qx̄,x〉, (15)

Q = Diag(q).

We can derive some necessary conditions for the following optimization problems
(QP) with quadratic objective functions:

(QP) minimize f (x) subject to x ∈U, (16)

where
f (x) :=

1
2
〈A0x,x〉+ 〈a0,x〉, and U ⊂ Rn.
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Corollary 14. Let U ⊂ Rn, x̄ ∈U. If x̄ is a global minimizer of problem (QP), then

[NCQ1] − lq,b,x̄ ∈ NL̄,U (x̄) for any q ∈ Rn with Diag(q)º A0,b = a0 +A0x̄.

Furthermore, [NCQ1] ⇐⇒ ∂L̄(− f )(x̄)⊂ NL̄,U (x̄).

Remark 2. For quadratic problem (QP), conditions [SCQ1], [NCQ1] and [NCQ2] have
the following relationships:

[SCQ1] =⇒ [NCQ1], and [NCQ1]
from Remark 7.1

=⇒ [SCQ1]

[SCQ1] =⇒ [NCQ2], but [NCQ2] 6=⇒ [SCQ1]

[NCQ1]
from Remark 7.1

=⇒ [NCQ2], but [NCQ2] 6=⇒ [NCQ1].

If U = U(x̄) = ∏n
i=1 Ui(x̄) for x̄ ∈U , then

[NCQ2] =⇒ [NCQ1].
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