
A Tabu Search Based Algorithm for
Cargo Loading Problem

Li Pan1 Joshua Z. Huang2 Sydney C.K. Chu1

1Department of Mathematics, University of Hong Kong, Hong Kong, China
2E-Business Technology Institute, University of Hong Kong, Hong Kong, China

Abstract Given a finite set of three-dimensional boxes in different sizes and an unlimited set
of containers in the same size, the cargo loading problem is to determine the minimum number
of containers that can contain all the boxes. The problem is NP-hard. In this paper, we propose
to use Tabu search optimization with a tree-based heuristic cargo loading algorithm as its inner
heuristic to solve this problem. This approach is more flexible in taking different box conditions into
consideration. Experimental results have shown that the new approach could find better solutions
on average than those by other recent meta- or heuristic algorithms.

Keywords Tabu search; cargo loading; bin packing; tree-based heuristic algorithm.

1 Introduction
Cargo loading or container loading is an important operation in modern logistics.

Hundreds of containers are loaded daily at many large distribution centers and manufac-
ture warehouses. Unfortunately, loading operations are still manual in many warehouses.
Improvement on container capacity utilization and loading efficiency can significantly
reduce logistics costs.

In warehouse logistics, cargo loading operation involves two problems: determining
the minimum number of containers that are required and loading each container to better
utilize its capacity. Mathematically, the cargo loading problem can be seen as a specific
aspect of the three-dimensional bin packing problem (3BPP), i.e., allocating without over-
lapping a finite set of rectangular items (cargos) into bins (containers) so as to meet certain
objectives. Some examples are:

1. Minimize the number of the bins to pack all items.
2. Maximize the total volume of items that can be packed into one bin.
3. Find a method to pack all given items into one bin.

In real applications, certain constraints are often added to the optimization process.
For example, item orientation, spatial relationship, packing sequence, etc. These addi-
tional constraints further complicate the process to optimize the objectives. Generally
speaking, the cargo loading problem is NP-hard. Therefore, heuristic methods are often
used for its solution.

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 292–302

In this paper, we present a tree-based heuristic algorithm to load containers. We first
vertically divide a container into layers and pack items into these layers. We treat each
layer as a rectangle and transform the 3D packing problem into a 2D packing problem.
Based on the B-tree structure [1], we recursively partition a layer into a set of smaller
rectangles according to the size distribution of items to be packed and represent each
rectangle as a node of a binary tree. Each item is allocated to a node and the packing
location in the layer is recorded. As such, a tree with allocated items is a packing plan for
the physical packing of the items. The major advantages of this algorithm are its efficiency
and flexibility to consider different packing conditions. Therefore, it is suitable for real
applications. After the trees for all layers are generated, we use a dynamic programming
method to pack containers vertically and hence determine the initial number of containers
that are needed to pack the given set of items.

We use Tabu search framwork [9] to further optimize the packing plan by repacking
some containers with different subsets of items to reduce the number of containers that
are finally needed. In this optimization process, utilization of capacity of some containers
is increased. Experimental results have shown that the new approach could find solutions
on average better than those by some other cargo loading methods.

The remainder of this paper is structured as follows: Section 2 presents the packing
problem and related work. Section 3 introduces the tree-based heuristic algorithm for con-
tainer loading. Section 4 describes the Tabu search process for optimization. Experiments
and comparison analysis are given in Section 5. Finally, the paper is briefly concluded in
Section 6.

2 Problem statement and related work
The cargo loading problem is a special case of the 3D bin packing problem (3BPP).

The 3BPP problem can be simply stated as follows: Given a set of n three-dimensional
rectangular items characterized by length li, width wi and height hi (i = 1,2, . . . ,n), and
an unlimited set of identical three-dimensional bins of length L, width W and height H,
find the minimal number of bins that can contain all items. The sides of items are packed
in parallel with sides of the bins and items can be rotated 90◦ on the flat floor.

It is known that this problem is NP-hard, since even the one-dimensional bin packing
problem is NP-hard [6]. Hence, heuristic methods are often used as alternatives to give
“acceptable”solutions within a comparatively short time. Over the last two decades, there
has been considerable advances in methods for solving a wide variety of 3BPP. In [12], the
first exact branch-and-bound algorithm was proposed for 3BPP. Extensive computational
results show that only small scale problems (less than 90 items) can be solved through
this method within a reasonable time. When the problem size increases, the computa-
tional time of the exact method grows exponentially. Therefore, recent research on 3BPP
is more focused on heuristic algorithms. First fit decreasing (FFD) and best fit decreasing
(BFD) algorithms are two fast heuristic algorithms [4] that are often used as inner heuris-
tics in new metaheuristic algorithms. In [9], a new approximation algorithm for packing
bins with fixed item orientation was presented. It was used as a subordinate heuristic
part within the Tabu Search metaheuristics. C code for this algorithm to solve two- or
three-dimensional bin packing problems is given in [10]. Genetic algorithms, simulated
annealing and some other heuristics are also used in solving the bin-packing problems

A Tabu Search Based Algorithm for Cargo Loading Problem 293

Figure 1: A layer packing plan tree.

[3, 5, 11].

3 B-tree algorithm
In this section we propose a binary tree heuristic algorithm that is used as the inner

heuristic algorithm for the tabu search. The B-tree heuristic algorithm packs the items by
layers which are vertical partitions of bins. The first layer lay on the base of the bin. A
layer is viewed as a rectangle with a size of L×W , while L and W are the length and the
width of the rectangle which are equal to the inner length and width of the bin. To pack
items in a layer, each item is also viewed as a rectangle of size li×wi, where li and wi are
the length and the width of the rectangle. Items are packed in parallel with the sides of
the layer.

Given a set of items to be packed in a layer, the height of the layer is defined by the
tallest item packed on this layer. The packing location of an item is defined by its lower
left corner, denoted as p.

In the following, we present the binary tree representation of a packed layer and the
heuristic algorithm for packing a layer.

3.1 B-tree representation of a layer packing plan
Given a set of items and a layer, the plan of packing these items in the layer can be

represented as a binary tree as shown in Fig.1. Except for the root, each node represents
an area that is partitioned from the layer. Items are packed in the areas of the nodes. The
area of a parent node contains all areas of its child nodes. The difference between the
parent node area and the child node areas is the area that an item is packed in the parent
node.

Fig.2 shows the information being recorded in the root and nodes. The root node
contains the height of the layer which is the height of the tallest item being packed. A node
contains information about its parent, its children (two branches), the area (Packing Area)
the node represents, the item packed, the packing position, and the remaining packing

294 The 7th International Symposium on Operations Research and Its Applications

Figure 2: Information recorded on each node.

area, i.e., the area remained after packing the item. This remaining area is used as possible
packing areas for its child nodes. If the node has not been packed, the remaining area is
equal to the packing area, for instance node F in Fig.1.

In generating a B-tree from a set of items, say item i, there are four operations that can
be performed at node j. As shown in Fig.3, if node j is packed and, after packing item i,
the remaining area is still big enough to pack a new item, two child nodes are created, one
for packing item i and one containing an area that is partitioned from the remaining area
(Fig.3(a)). If node j is packed and the remaining area is not big enough to pack a new
item after packing i, two child nodes are created, one containing the packed item with all
the remaining area of node j as its packing area and one being a dummy node (Fig.3(b)).
If node j is not packed and the remaining area is still big enough to pack a new item after
packing item i, then pack i and create two child nodes with packing areas partitioned by
the packed item from the remaining area of node j (Fig.3(c)). If node j is not packed and
after packing i, the remaining area is not big enough to pack a new item, then leave this
node as a leaf node (Fig.3(d)).

3.2 Packing method
For some classical finite Bin-packing algorithms, like Finite next-fit, Finite first-fit,

etc. [2], the poor absolute worst case performance is mainly due to their level-oriented
characteristics. Since the items are packed with their bottom edges on a level and the
height of the level is defined by the tallest item packed on this level, some available areas
are often wasted. The B-tree algorithm can reduce the wasted areas by adopting sub-
branches instead of one level.

We pack the items with similar heights on the same layer so we first sort all the items
on height and arrange the items in the order of decreasing heights. Then, we partition the
items into clusters with different ranges of item heights. The clustering procedure is as
follows. The first cluster contains the items whose height is taller than βh1(β < 1) where
h1 is the height of the tallest item. Assume item i is the tallest item in the remaining
items. The next cluster contains the items whose heights are taller than βhi. The process
continues until all items are clustered.

A Tabu Search Based Algorithm for Cargo Loading Problem 295

Figure 3: Packing and branching conditions without considering rotation: (a) One item
has been packed on node j, and the remaining area can be further branched into two slices
after packing i; (b) One item has been packed on node j, and the remaining area cannot
be further branched; (c) No item has been packed on node j, and the remaining area can
be further branched into two slices after packing i; (d) No item has been packed on node
j, and the remaining area cannot be further branched.

In each cluster, the items are sorted by width and arranged from the widest item to
the narrowest item. Starting from the widest item, the B-tree packing algorithm packs the
items in the cluster one at a time. The items are packed in the increasing order of clusters.

To begin, we initialize a new tree with a root node and try to pack the first item at
the lower left corner of the new layer. The first item divides the layer into two areas
and two child nodes are created to represent the two packing areas as the left and the
right child node of the root respectively. The first item is packed to the left child node.
The lower left corner of the layer is recorded as the packing position of the first item.
The remaining packing area is calculated as described below. The right child node only
records the packing area that is not packed (like the situations in Fig.3(c) and 3(d)).

To pack a new item in the remaining areas of the nodes, the tree is traversed by the
item across all the nodes that can pack the item and a node is identified that can pack the
item with the minimal waste area. The depth-first traversal order is used in this process.

The waste area is calculated as follows: For item i with size of (li×wi) to be pack to
node j, the remaining area of node j is S j (S j =< L1 j,L2 j > × < W1 j,W2 j >), where
L1 j,L2 j,W1 j,W2 j are the coordinates of the length side and the width side of S j, <
L1 j,L2 j > represents the length segment and < W1 j,W2 j > the width segment. To pack

296 The 7th International Symposium on Operations Research and Its Applications

item i to node j, the waste area WA for node j is calculated under the following conditions:

1. In case that item i is not rotated:

(a) If an unpacked item k with size of (lk ×wk) exists that can be packed in <
L1 j,L2 j > × < W1 j + wi,W2 j >, then WA = (L2 j −L1 j)× (W2 j −W1 j −
wi−wk);

(b) If such an item does not exist, then WA = li× (W2 j−W1 j−wi).

2. In case that item i is rotated:

(a) If an unpacked item k with size of (lk ×wk) exists that can be packed in <
L1 j,L2 j > × < W1 j + li,W2 j >, then WA = (L2 j − L1 j)× (W2 j −W1 j −
li−wk);

(b) If such an item does not exist, WA = wi× (W2 j−W1 j− li).

After all waste areas are calculated for all available nodes that can pack the item, the
node with the minimal waste area is selected. The item is packed following the conditions
below:

1. In case that one item has been packed on the selected node j (situations (a) and (b)
in Fig.3):

(a) If minWA is calculated from condition 1.(a), create two new child nodes
from node j. Pack item i to the left node. Record the packing area as <
L1 j,L2 j >×< W1 j,W1 j +wi > and the remaining area as < L1 j + li,L2 j >
× < W1 j,W1 j + wi >. For the right node, record only the packing and the
remaining area as < L1 j,L2 j >×< W1 j +wi,W2 j >. Leave the item infor-
mation empty.

(b) If minWA is calculated from condition 1.(b), create two new child nodes
from node j. Pack item i to the left node. Record the packing area as
< L1 j,L2 j > × < W1 j,W2 j > and the remaining area as < L1 j + li,L2 j >
× < W1 j,W2 j >. For the right node, record the remaining area as < 0,0 >
×< 0,0 > to create a dummy node.

(c) If minWA is calculated from condition 2.(a), create two new child nodes from
node j. Pack item i to the left node. Record the packing information of node i,
the packing area as < L1 j,L2 j >×<W1 j,W1 j + li > and the remaining area
as < L1 j +wi,L2 j >×<W1 j,W1 j + li >. For the right node, record only the
packing and the remaining area as < L1 j,L2 j >×< W1 j + li,W2 j >. Leave
the item information empty.

(d) If minWA is calculated from condition 2.(b), create two new child nodes from
node j. For the left node, record the packing information, the packing area as
< L1 j,L2 j > × < W1 j,W2 j > and the remaining area as < L1 j + wi,L2 j >
× < W1 j,W2 j >. For the right node, record the remaining area as < 0,0 >
×< 0,0 > to create a dummy node.

2. In case that no item has been packed on the selected node j (situations (c) and (d)
in Fig.3):

(a) If minWA is calculated from condition 1.(a), add packing information of item
i to node j, and create two new child nodes from node j. For the left node,

A Tabu Search Based Algorithm for Cargo Loading Problem 297

record the packing area and the remaining area as < L1 j + li,L2 j > × <
W1 j,W1 j + w j >. For the right node, record the packing area and the re-
maining area as < L1 j,L2 j >×< W1 j +wi,W2 j >. Both child nodes record
no packing information.

(b) If minWA is calculated from condition 1.(b), add packing information of item
i to node j and do not create child nodes.

(c) If minWA is calculated from condition 2.(a), add packing information of item
i to node j, and create two new child nodes from node j. For the left node,
record the packing area and the remaining area as < L1 j + wi,L2 j > × <
W1 j,W1 j + li >. For the right node, record the packing area and the remain-
ing area as < L1 j,L2 j > × < W1 j + li,W2 j >. Both child nodes record no
packing information.

(d) If minWA is calculated from condition 2.(b), add packing information of item
i to node j and do not create child nodes.

Item i will be packed at position p in order of preference:

1. In an initialized layer of height bigger than or equal to hi, at position p with the
smallest WA;

2. In an initialized layer of height less than hi, at position p with the smallest WA and
updating the layer’s height;

3. Create a new layer (tree), with its lower left corner packed in the lower left corner
of the new layer.

3.3 Bin packing
After packing all items into layers, we need to pack all layers into bins. Let H1,H2, . . . ,Hs

represent s different heights in n layers. n j layers have height H j. A finite bin packing
solution is obtained by a dynamic programming technique as follows.

Assume we have n layers with s different heights H1,H2, . . . ,Hs to be packed into the
containers. Let H be the height of containers and Hi the height of ni layers with the same
height. The bin packing problem can be formulated to a one-dimensional multiple length
cutting problem with only one length. A cutting pattern is defined if we can find integers
ai ≥ 0, i = 1, . . . ,s such that a1H1 + a2H2 + · · ·+ asHs ≤ H. Suppose that the jth cutting
pattern generates ai j pieces of length Hi. Let x j be the number of times the jth cutting
pattern is used. The problem is formulated as follows:

Minimize c = x1 + x2 + · · ·+ xk
Subject to ai1x1 +ai2x2 + · · ·+aikxk ≥ ni, i = 1, . . . ,s

x j ≥ 0, x j integer j = 1, . . . ,k

where k is the total number of possible cutting patterns. The method to solve this problem
is to cut the first length H using dynamic programming to minimize the wastage left.
Then, we cut the second length H and so on until all required pieces are cut. During the
Nth cutting procedure, let yi be the number of the ith group of layers created in the cutting
procedure, and Ri the number of pieces of layer i remained to be cut after N−1 cuttings.
The sub-problem for each cutting procedure can be formulated as follows:

298 The 7th International Symposium on Operations Research and Its Applications

Maxmize y1H1 + y2H2 + · · ·+ ysHs
Subject to y1H1 + y2H2 + · · ·+ ysHs ≤ L

yi ≤ Ri, i = 1, . . . ,s
yi non-negative integers

This can be solved by dynamic programming as:

fl(x) = max{∑l
i=1 yiHi : ∑l

i=1 yiHi ≤ x,yi ∈ {0,1, . . . ,Ri}}
Pl(x) =number of type l used in fl(x)

where

f0(x) = 0, for all x
fl(0) = 0, for all l

fl(x) = maxi∈{0,1,...,min{R j ,[x/Hl]}}{ fl−1(x− i∗Hl)+ i∗Hl}
Pl(x) =value of i used in fl(x)

Repeatedly solving this sub-problem until all Ri = 0 gives the final solution.

4 A tabu search approach
The metaheuristic method is a good way for guiding the operations of a subordinate

heuristic to find a better solution for complicated combinatorial problems. In this paper,
we use a tabu search metaheuristic technique. Reader is referred to [7] for an introduc-
tion to the tabu search algorithm. The approach is based on [9], in which the search
scheme and neighborhood size are independent of the specific problem to be solved and
the neighborhood size and structure are varied dynamically during the search procedure.

The initial upper bound solution is obtained by executing the B-tree heuristic algo-
rithm. For a given set of items S, let B(S) represent the output solution of executing
B-tree heuristic algorithm on S. The search is started by packing each item into a separate
bin. During the next steps, the target of search is trying to reduce the number of bins used.
Here, let nc represent the number of bins used in the current solution.

The target is reached by repacking a set of items S, trying to empty a target bin to
improve the current solution. The target bin is chosen on the fact that, if a bin contains
less and/or smaller items, it is more likely to be emptied through local optimization. We
adopted the same policy used in [9], i.e., the target bin St is defined as the one which
minimizes the filling function (α is a prefixed non-negative parameter).

ϕ(Si) = α
∑ j⊆Si l jw jh j

LWH
− |Si|

n
(1)

in which, n is the size of the problem. The first part of the formula represents the space
utilization when α = 1 and the second part is the ratio of the number of items packed in
bin i to the number of all items.

At each iteration, we construct one set S, which is combined by one item j from target
bin St and other k bins in the current solution. The new packing for set S is obtained
by executing the B-tree algorithm B on S. The parameter k represents the size of the
searching neighborhood, which is dynamically changed during the search procedure.

A Tabu Search Based Algorithm for Cargo Loading Problem 299

If B(S) ≤ k, we can remove item j out of target bin St without creating more bins.
Then, we update the packing solution nc, reduce k by one unit, select another item from
St to construct a new set S, and apply B-tree algorithm on them. Otherwise, S is re-
constructed by a different set of k bins in the current solution; or when all the possible
combinations of k-tuple bins have been considered for item j, we select another item in
the target bin and apply B-tree algorithm on them. There are a tabu list and a tabu tenure
τk(k = 1, . . . ,kmax) for each neighborhood size k. Each tabu list stores the filling function
values for the last τk moves performed in the corresponding k.

The search procedure is stopped if all item j from the target bin and all combination
conditions of k-tuple bins in the current solution have been considered without obtaining
any acceptable moves, or m moves have been run without improving packing solution (m
is a prefixed positive integer parameter). For both cases, if k is less than a prefixed limit,
increase k by one unit and explore the new neighborhood; otherwise, apply a diversifica-
tion procedure.

There are two kinds of diversification actions: the first selecting the target bin with the
second smallest value of the filling function; the second repacking items from the bnc/2c
bins with the smallest filling function value into separate bins. For both cases, empty all
the tabu list and reset k = 1.

5 Computational experiments
In this section, we present the results of this new algorithm from computational ex-

periments. The results have shown that within a short computation time this algorithm
produced better solutions on average than other meta- or heuristic algorithms we have
compared.

The algorithm was coded in C and run in a Centrino Duo processors personal com-
puter. The test data was generated in reference with the data generation methods published
in [12]. For the B-tree algorithm and tabu search approach the parameters were set to the
following values: β = 0.5,α = 3.5,kmax = 3,τ = 20 and m = 20.

5.1 Test data
Six classes of test data were generated with the same method as in [12]. The data sets

contained 50 to 150 items. The distributions of the items in these data sets were:

• Type 1: the majority of items are very high and long.
• Type 4: the majority of items are big.
• Type 5: the majority of items are small.
• Type 6: items with dimensions randomly generated in a small interval.
• Type 7: items with dimensions randomly generated in a medium interval.
• Type 8: items with dimensions randomly generated in a large interval.

We did not generate data of Types 2 and 3 as in [12], because the items can be rotated
on the flat surface, meaning that these two types are similar to Type 1. For each type and
each number of items (i.e., 50, 100, 150), ten data sets were generated.

To evaluate the tabu search based heuristic algorithm (TSBH), we compared the re-
sults with the B-tree (only) algorithm presented in Section 3, the guided local search
heuristic algorithm (GLS) [8], the HA and HATS algorithms [9] and the MPV algorithm

300 The 7th International Symposium on Operations Research and Its Applications

[12]. GLS iteratively decreases the number of bins used by searching for feasible packing
of bins. HATS is another tabu search algorithm using HA, a two-phase heuristic algo-
rithm, as its inner heuristic algorithm. The MPV algorithm reaches an exact solution if it
gets sufficient time. In the next section, we present the computational results.

5.2 Test results
The results of averages of bins used are summarized in Table 1. The first three

columns give the problem class (with bin size) and the number of items n. For each
algorithm, we report the average number of bins used from ten data set. TSBH was run
with a time limit of 120 CPU seconds. GLS and MPV were run with a time limit of 1000
CPU seconds while HATS was run with a time limit of 60 CPU seconds. The computing
times of B-tree algorithm and HA were negligible.

From Table 1, we can see that our results are satisfactory. The TSBH algorithm gen-
erally improved the initial deterministic solution produced by the inner heuristic B-tree.
For most cases, TSBH found solutions similar to or better than other meta- or heuristic al-
gorithms. Even though for some cases, the inner heuristic algorithm B-tree alone did not
perform as well as HA, after combining with tabu search approach, the results of TSBH
were generally better than those of HATS. Among TSBH, GLS and MPV, TSBH (and
GLS) obtained equal or better solutions than the MPV algorithm for all except one class
data, and a slightly better average solution than GLS, with far less time. On average, the
TSBH algorithm used 18.27 bins which was the minimum among all the above algorithms
and was very comparable to GLS.

Class Bin
Size

n TSBH B-tree GLS[8] HATS[9] HA[9] MPV[12]

1 100 50 13.0 15.6 13.4 13.4 13.9 13.6
× 100 23.8 27.9 26.7 27.1 27.6 27.3
100 150 37.9 42.8 37.0 37.3 38.1 38.2

4 100 50 29.1 29.1 29.4 29.4 29.4 29.4
× 100 58.3 58.4 59.0 59.0 59.0 59.1
100 150 85.1 85.1 86.8 86.8 86.9 87.2

5 100 50 7.0 7.7 8.3 8.4 8.5 9.2
× 100 15.1 17.0 15.1 15.1 15.8 17.5
100 150 21.0 23.4 20.2 20.7 21.4 24.0

6 10 50 9.8 10.6 9.8 9.9 10.5 9.8
× 100 19.1 20.3 19.1 19.3 20.0 19.4
10 150 29.1 30.6 29.4 29.7 30.6 29.6

7 40 50 6.8 7.6 7.4 7.5 8.0 8.2
× 100 13.9 16.0 12.3 12.6 13.3 15.3
40 150 17.9 21.0 15.8 16.5 17.2 19.7

8 100 50 8.9 10.6 9.2 9.3 9.9 10.1
× 100 18.0 20.8 18.9 19.0 19.9 20.2
100 150 24.4 28.4 23.9 24.6 25.7 27.3

Total 438.5 473.2 441.7 445.6 455.7 465.1
Average 18.27 19.72 18.40 18.57 18.99 19.38

Table 1: Experimental results: averages of ten instances for each class and size.

A Tabu Search Based Algorithm for Cargo Loading Problem 301

6 Conclusion
The cargo loading problem is a specific problem of the three-dimensional bin packing

problems. It’s NP-hard and computationally difficult to solve. We have presented a Tabu
search based method with a B-tree heuristic algorithm as its inner heuristics. Compu-
tational experiments have shown that the new method is effective and on average yields
good results compared with some recent meta- or heuristic algorithms.

References
[1] Aho, A.V., Hopcroft, J.E., Ullman, J.D., Data structures and algorithms. Reading,

MA: Addison-Wesley. (1983)

[2] Berkey, J.o., Wang, P.Y.,Two dimensional finite bin packing algorithms. Journal of
Operational Research Society, 38, 423-329 (1987)

[3] Bortfeldt, A., Mack, D., A heuristic for the three-dimensional strip packing prob-
lem. European Journal of Operational Research, 183, 1267-1281 (2005)

[4] Dyckhoff, H., Toth, P., Knapsack Problems: Algorithms and Computer Implemen-
tations. Chichester: Wiley (1990)

[5] Gancavels, J.F., A hybrid genetic algorithm-heuristic for a two-dimensional orthog-
onal packing problem. European Journal of Operational Research. 183, 1212-1238
(2002)

[6] Gary, M., Johnson, D., Computers and intractability: a guide to the theory of NP-
completeness. San Francisco: W.H. Freeman (1979)

[7] Glover, F., Laguna, M., Tabu search. Boston, MA: Kluwer Academic Publisher.
(1997)

[8] Faroe, O., Pisinger, D., Zachariasen, M., Guided local search for the three-
dimensional bin-packing problem. INFORMS Journal on Computing. 15(3), 267-
283 (2003)

[9] Lodi, A., Martello, S., Vigo, D., Heuristic algorithms for the three-dimensional bin
packing problem. European Journal of Operational Research. 141, 410-420 (2002)

[10] Lodi, A., Martello, S., Vigo, D., Tspack: A unified tabu search code for multi-
dimensional bin packing problems. Annals of Operations Research. 131, 203-213
(2004)

[11] Loh, K., Golden, B., Wasil, E., Solving the one-dimensional bin packing problem
with a weight annealing heuristic. Computers & Operations Research. 35, 2283-
2297 (2006)

[12] Martello, S., Pisinger, D., Vigo, D., The three-dimensional bin packing problem.
Operations Research, 48, 256-267 (2000)

302 The 7th International Symposium on Operations Research and Its Applications

