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Abstract Retrial queues are frequently observed in a real world system likewise call center or
internet service industries. In this paper, a retrial queue system in which the number of retrials of
each customer is limited by a finite number, say m is considered. That is, if a customer fails to enter
the service facility at mth retrial, then the customer leaves the system without service. The effects
of restricting the number of retrials are investigated numerically by using the algorithmic method
and simulation experiments.
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1 Introduction
Retrial queues are characterized by the feature of retrial phenomena that a customer

who finds all the servers busy upon arrival may join the virtual group of blocked cus-
tomers, called orbit and retry for service after some random amount of time. Retrial
queues have been widely used to model the many practical situations arising from tele-
phone systems, telecommunication networks and call center model. For a detailed overviews
of main results and the bibliographical information about retrial queues, see [1, 3].

In this paper, we consider the retrial queue where the number of retrials of each cus-
tomer is limited by a finite number, say m. That is, each customer is allowed to attempt
the service request at most m + 1 times including primary attempt by an external arrival
and if a customer fails to enter the service facility at m + 1st attempt, then the customer
leaves the system without service.

The model considered in this paper has at least two important features in the litera-
ture of retrial queues. One is that our model can be considered as a retrial queue with
impatient customers. Retrial queue with impatient customers can be described in terms
of persistence function {H j, j = 1,2, · · ·}, where H j is the probability that after the jth
attempt fails, a customer will make the ( j +1)st one [3]. Our model is the case of H j = 1
for j ≤ m and H j = 0 for j > m. Most of papers about the retrial queue with impatient
customers deal with the case of H2 = H3 = · · ·= H, that is, the probability of a customer

∗e-mail : ywshin@changwon.ac.kr
†e-mail : dhmoon@changwon.ac.kr

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 237–247



reattempting after failure of a retrial does not depend on the number of previous retrials.
Closed form solutions for the system have not been obtained except for a few special
cases, for example, M/M/1 retrial queue with H < 1, see [3, Section 3.3]. For more
about the literature retrial queues with impatient customers, we refer the bibliographical
remarks of [3, Chapter 5] and the references in [8].

Another feature is that our model can be considered as a control scheme in retrial
queue. It can be expected intuitively that the smaller the number of retrials permitted to
a customer is, the more lost customers are and hence the system congestion is reduced.
One way to reduce the system congestion from this intuition is to restrict the number
of retrials. This type of control scheme can be used in wireless LAN protocol e.g. [6].
However, it is very difficult to find the literature of the mathematical analysis or even
numerical investigation of the system.

The objectives of this paper are to investigate numerically the effects of restricting
the number of retrials for various parameters and to give an insight to the behavior of the
system. A generalized truncation method in [5] and simulation are used for numerical
results, and an analytical result is also given for a special case.

The paper is organized as follows. The mathematical model is described in Section 2.
In Section 3 the balance equation for system behavior and an analytical result are given.
The computing procedures are described in Section 4. Numerical results are are presented
in Sections 5. Finally, conclusions are given in Section 6.

2 The Model
We consider an M/M/s/s retrial queue which consists of an orbit with infinite capac-

ity and a service facility with s servers and no waiting space. Service times of customers
are independent of each other and have a common exponential distribution with parameter
µ . Customers arrive from outside according to a Poisson process with rate λ . When an
arriving customer finds that all the servers are busy, the customer joins orbit and repeats
its request after an exponential amount of time. The time interval between retrials of a
customer from orbit is called the inter-retrial time. We assume that the number of retrials
of a customer from orbit is limited by m and denote by Σ(m) the system. That is, each
customer in Σ(m) is allowed to attempt the service request at most m + 1 times including
primary attempt by an external arrival and if a customer fails to enter the service facility at
the (m+1)st attempt (this is the mth retrial), then the customer leaves the system without
service.

The system Σ(m) can be viewed as a queueing network with m+1 nodes as shown in
Figure 1 for m = 3. Service facility is denoted by node 0 and the customers who have
been blocked to enter the service facility k times are in node k, k = 1,2, · · · ,m. Thus
if a customer at node k, (1 ≤ k < m) fails again to get into the service facility, then the
customer enters node k +1 while the customer at node m leaves the system forever and is
lost upon failure of attempt to get service. The customers at node k behave independently
of each other, and the time a customer spends at node k is assumed to be exponential with
rate γk > 0, k = 1,2, · · · ,m. Thus when there are n customers at node k, the retrial rate is
nγk.

Let X (m)
k (t) be the number of customers at node k, k = 0,1,2, · · · ,m in Σ(m) at time t.

Then the (m+1)-dimensional stochastic process XXX (m) = {XXX (m)(t), t ≥ 0} with XXX (m)(t) =
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Figure 1: Schematic diagram of Σ(3) system

(X (m)
0 (t), · · · ,X (m)

m (t)) is a Markov chain on the state space S = {0,1,2, · · · ,s}×Zm
+,

where Z+ = {0,1,2, · · ·} is the set of nonnegative integers. The capacity of node 0 (the
service facility) is finite and the customers at node k, 1 ≤ k ≤ m behave like those in the
queue with infinite servers. Thus Σ(m) is always stable.

3 Stationary distribution
Let X (m)

k be the stationary version of {X (m)
k (t), t ≥ 0}, k = 0,1,2, · · · ,m. For sim-

plicity, we write Xk instead of X (m)
k by omitting the index m in the following if it is not

confused in the context.
Let

P(nnn) = P(Xk = nk,k = 0,1,2, · · · ,m),

where nnn = (n0,n1, · · · ,nm) ∈ S . Then the balance equations are given as follows: for
nnn ∈S ,

(
λ +n0µ +

m

∑
k=1

nkγk

)
P(nnn) = λP(nnn−eee0)+(n0 +1)µP(nnn+eee0)

+
m

∑
k=1

(nk +1)γkP(nnn−eee0 +eeek), 0≤ n0 < s, (1)

(
λ + sµ +

m

∑
k=1

nkγk

)
P(nnn) = λP(nnn−eee0)+

m

∑
k=1

(nk +1)γkP(nnn−eee0 +eeek)

+λP(nnn−eee1)+
m

∑
k=1

(nk +1)γkP(nnn+eeek−eeek+1), n0 = s, (2)

where eee j, ( j = 0,1, · · · ,m) is the (m + 1)-dimensional vector whose jth component (be-
ginning from 0th component) is 1 and others are all 0 and eeem+1 = (0, · · · ,0) ∈S .
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The equations (1) and (2) are too complex to obtain the analytic solution for general
case. Now we present the solution of the equation for s = 1 and m = 1. In this special
case, the balance equations (1) and (2) become

(λ + jγ)p(0, j) = µ p(1, j), j ≥ 0, (3)
(λ + µ + jγ)p(1, j) = λ p(1, j−1)+λ p(0, j)

+ ( j +1)γ(p(0, j +1)+ p(1, j +1)), j ≥ 0. (4)

Combining (3) with (4), we have that

[(λ (λ + jγ)+ jγ(λ + µ + jγ)]p(0, j) = (λ (λ +( j−1)γ)p(0, j−1)
+ ( j +1)γ(λ + µ +( j +1)γ)p(0, j +1), j ≥ 0. (5)

Thus

p(0, j) = p(0,0)
j

∏
i=1

(
λ (λ +(i−1)γ)
iγ(λ + µ + iγ)

)

= p(0,0)
(

λ + µ
λ + jγ

)
1
j!

(
λ
γ

) j j

∏
i=0




λ
γ + i

λ+µ
γ + i


 , j ≥ 0

and hence from (3) that

p(1, j) = p(0,0)
(

λ + µ
µ

)
1
j!

(
λ
γ

) j j

∏
i=0




λ
γ + i

λ+µ
γ + i


 , j ≥ 0.

Thus

p(0,0)−1 =
λ + µ

µ

∞

∑
j=0

1
j!

(
λ
γ

) j j−1

∏
i=0




λ
γ + i

λ+µ
γ + i


 .

4 Computing Procedure
4.1 Matrix Analytic method

Consider a continuous time Markov chain XXX = {(X0(t),X1(t)), t ≥ 0}, called level
dependent quasi-birth-and-death (LDQBD) process on the state space {(i, j) : i≥ 0, 0≤
j ≤ Ki} with generator of the form

Q =




B0 A0
C1 B1 A1

C2 B2 A2
C3 B3 · · ·

...




, (6)

where Ai, Bi and Ci are the matrices of Ki×Ki+1, Ki×Ki and Ki×Ki−1, respectively and
Ki = K, i ≥ i0 for some i0 > 0. Note that Ai, Bi and Ci are square matrices of size K for
i > i0.
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We assume that XXX is positive recurrent and write the stationary distribution xxx of Q
in the block partitioned form xxx = (xxx0,xxx1,xxx2, · · ·) with xxxi = (xi0,xi1, · · · ,xiKi), i ≥ 0. For
computing xxx, we use the generalized truncation method proposed in Neuts and Rao [5]
with some modifications. The first step of the approximation is to modify the infinitesimal
generator Q to QN by letting Ai = AN , Bi = BN , Ci = CN for i≥ N, where N > i0 is a fixed
positive integer. The second step is to find the stationary distribution yyy = (yyy0,yyy1, · · ·)
of QN and to increase N until the individual elements of yyy do not change significantly.
Finally, approximate xxx by yyy.

For description of yyy, we need some matrices. For a fixed N, let R be the K×K matrix
that is the minimal nonnegative solution of the equation

AN +RBN +R2CN = 0 (7)

and R(i), 0 ≤ i ≤ N−1 be the sequence of Ki×Ki+1 matrices which are the nonnegative
solutions to the system of equations

Ai +R(i)Bi+1 +R(i)R(i+1)Ci+1 = 0 (8)

with R(N) = R. The following proposition can be obtained by combining the results in
Bright and Taylor [2] and Neuts [4].

Proposition 1. The stationary distribution yyy of QN is given by

yyyk =
{

yyy0R[0,k−1], 1≤ k ≤ N,
yyy0R[0,N−1]Rk−N , k ≥ N +1,

(9)

where R[0,k] = R(0)R(1) · · ·R(k). The vector yyy0 is the unique solution of the equation

yyy0(B0 +R(0)C1) = 0

with the normalizing condition

yyy0

(
I +

N

∑
k=1

R[1,k−1]+R[1,N−1](I−R)−1

)
e = 1,

where e is the column vector whose components are all 1.

There are many algorithms for computing the matrices R and R(i), e.g. see [7] and we
omit the computing procedure.

Algorithm for m = 1. In this case, the stochastic process XXX (1) = {(X (1)
1 (t),X (1)

0 (t)), t ≥
0} is an LDQBD process with generator Q(1) that is the same form as Q in (6). Thus the
procedure described in the previous subsection can be applied to this special case. Let
A(1), B(1)

k and C(1)
k be the matrix components of Q(1) corresponding to Ak, Bk and Ck

in Q, respectively. Then A(1), B(1)
n and C(1)

n are square matrices of order s + 1 and the
(i, j)-components (0≤ i, j ≤ s) are given by

[A(1)]i j =
{

λ , i = j = s
0, otherwise , [C(1)

n ]i j =





nγ, j = i+1,0≤ i≤ s−1
nγ, i = j = s,
0, otherwise
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and the matrix B(1)
n is the tridiagonal matrix whose diagonal vector dn, upper diagonal

vector un and lower diagonal vector ln are given as follows

dn = [Λn,0,Λn,1, · · · ,Λn,s],un = [λ ,λ , · · · ,λ ], ln = [µ,2µ, · · · ,sµ],

where Λn,k =−(λ + γn+ kµ), n≥ 0.

Algorithm for m = 2. For a computation of the stationary distribution in Σ(2), we
combine the direct truncation method and generalized truncation method. First, consider
a truncated system in which the capacity of node 2 is J and denote it by Σ(2)

J . If a customer
at node 1 is blocked to enter node 0 when there are J customers at node 2, then the
customer is lost. Let XJ

i (t), i = 0,1,2 be the number of customers at node i in Σ(2)
J at

time t and define Y J
0 (t) = XJ

0 (t), Y J
1 (t) = XJ

1 (t)+XJ
2 (t), Y J

2 (t) = XJ
2 (t), (t ≥ 0). Then the

stochastic process YYY J = {(Y J
1 (t),Y J

0 (t),Y J
2 (t)), t ≥ 0} is an LDQBD process on the state

space SJ = {(n, i, j) : n ≥ 0, 0 ≤ i ≤ s, 0 ≤ j ≤ Jn}, where Jn = min(J,n). Writing the
state in lexicographic order, the generator Q(2) of YYY J is the same form as Q in (6). Let
A(2), B(2)

k and C(2)
k be the matrix components of Q(2) corresponding to Ak, Bk and Ck in Q,

respectively. Then B(2)
n is the square matrix of order (s+1)(Jn +1), (n≥ 0) and the sizes

of A(2)
n and C(2)

n are ((s + 1)(Jn + 1))× ((s + 1)(Jn+1 + 1)) and ((s + 1)(Jn + 1))× ((s +
1)(Jn−1 +1)), respectively.

Writing the matrices A(2)
n = (A(2)

n:i, j)0≤i, j≤s in the block matrix form, where A(2)
n:i, j, (0≤

i, j ≤ s) is the (Jn + 1)× (Jn+1 + 1) matrix, we can easily see that A(2)
n:i, j = O for i 6= s or

j 6= s and

A(2)
n:s,s =

{
(λ In+1 : O), n≤ J−1,
λ IJ+1, n≥ J

and Ik is the identity matrix of order k.

Analogously, write B(2)
n = (B(2)

n:i, j)0≤i, j≤s in the block partitioned form with (Jn +1)×
(Jn + 1) matrix B(2)

n:i, j, 0 ≤ i, j ≤ s. Then it can be seen that B(2)
n is a block tridiagonal

matrix whose lower and upper diagonal blocks are, respectively given by

B(2)
n:i,i−1 = µiIJn+1, 0≤ i≤ s,

B(2)
n:i,i+1 = λ IJn+1, 0≤ i≤ s−1

and the diagonal blocks B(2)
n:i,i, 0≤ i≤ s−1 are diagonal matrices

B(2)
n:i,i = diag(b(2)

n;i,0,b
(2)
n;i,1, · · · ,b(2)

n;i,Jn
), 0≤ i≤ s−1

with
b(2)

n;i,k =−(λ + µi + γ1(n− k)+ γ2k), 0≤ k ≤ Jn

and

[B(2)
n:s,s]i j =




−(λ + µs + γ1(n− i)+ γ2i), 0≤ i = j ≤ Jn,
(n− i)γ1, j = i+1,0≤ i≤ Jn−1,
0, otehrwise.
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Writing the matrix C(2)
n = (C(2)

n:i, j)0≤i, j≤s in the block partitioned form, we can see that

C(2)
n:i, j is the (Jn +1)× (Jn−1 +1) matrices with C(2)

n:i, j = 0, j 6= i+1 and

[C(2)
n:i,i+1] j j′ =





(n− j)γ1, j′ = j, 0≤ j ≤ Jn,
jγ2, j′ = j−1, 1≤ j ≤ Jn,
0, otherwise,

for 0≤ i≤ s−1,

[C(2)
n:s,s] j j′ =

{
jγ2, j′ = j−1, 1≤ j ≤ Jn,
0, otherwise, for n≤ J,

[C(2)
n:s,s] j j′ =





jγ2, j′ = j−1, 1≤ j ≤ Jn,
(n− J)γ1, j′ = j = J,
0, otherwise.

for n≥ J +1.

Let yyy(J,N) be the stationary distribution of Q(2)
J,N which is obtained from Q(2)

J by setting

A(2)
k = A(2)

N , B(2)
k = B(2)

N and C(2)
k =C(2)

N for k≥N. Now we apply the computing procedure
described in this section with slighted modification for yyy(J,N) that will be used for an
approximation of the stationary distribution xxx(2)

J of Q(2)
J . Once yyy = yyy(J,N) is obtained, the

distributions of X (2)
k , k = 0,1,2 can be obtained as follows. Note from the definition of

Y J
k , k = 0,1,2 that

yni j = P(X0 = i,X1 +X2 = n,X2 = j), n≥ 0, 0≤ i≤ s, 0≤ j ≤ Jn.

Thus
P(X0 = i) = ∑∞

n=0 ∑Jn
j=0 yni j, P(X1 = k) = ∑s

i=0 ∑k+J
n=k yn,i,n−k,

P(X2 = k) = ∑∞
n= j ∑s

i=0 yni j, P(X1 +X2 = n) = ∑s
i=0 ∑Jn

j=0 yni j.

Algorithm for m = ∞. Consider the system with m = ∞ and γk = γ , k = 1,2, · · · and
denote it by Σ∗. This system is the ordinary M/M/s/s retrial queue. A very effective
algorithm for computing the stationary distribution of M/M/s/K retrial queue can be
found in Shin and Moon [7] and details are omitted here.

4.2 Simulation
The matrix analytic method proposed in the case of m = 2 can be applied to the case of

m≥ 3 by truncating the states X (m)
k (t) by Mk, k = 2,3, · · · ,m. Then the truncated process

forms LDQBD process. However, the size of block matrix in the diagonal block of the
generator can be (s + 1)(M2 + 1) · · ·(Mm + 1). So the size of the matrix that is required
to be inverted increases rapidly as m increases and the matrix analytic method for large m
does not seem to be appropriate for large m. Simulation method can be considered as an
alternative for this general case.

5 Numerical Results
In this section, some numerical results are presented for investigating the effects of

the parameters to the system behavior. We consider the following system characteristics :

Retrial Queues with Limited Number of Retrials 243



Table 1. Comparisons of simulations with exact results for s = 5, µ = 1.0, ρ = 0.75
PB L0 LOrbit

m γ Exact Sim. (C.I.) Exact Sim. (C.I.) Exact Sim. (C.I.)
1 1.875 0.237 0.237 (0.003) 3.308 3.309 (0.014) 0.474 0.476 (0.013)

3.750 0.225 0.225 (0.002) 3.247 3.262 (0.009) 0.225 0.227 (0.003)
7.500 0.212 0.213 (0.002) 3.193 3.199 (0.007) 0.106 0.106 (0.001)

2 1.875 0.277 0.277 (0.002) 3.442 3.441 (0.008) 0.853 0.853 (0.013)
3.750 0.261 0.264 (0.003) 3.358 3.371 (0.010) 0.425 0.430 (0.007)
7.500 0.241 0.241 (0.003) 3.276 3.275 (0.010) 0.207 0.206 (0.004)

∞∗ 1.875 0.388 0.384 (0.007) 3.750 3.742 (0.022) 2.508 2.487 (0.080)
3.75 0.407 0.401 (0.008) 3.750 3.737 (0.024) 1.975 1.836 (0.077)
7.5 0.425 0.411 (0.009) 3.750 3.719 (0.025) 1.695 1.415 (0.057)

∗ The simulation results are for m = 30, C.I. : half length of 95% confidence interval

• PB = P(X0 = s) : blocking probability that an arriving customer finds that all the
servers are busy

• PL = γ
λ E(Xm;X0 = s) : loss probability that the customer leaves the system without

service
• L0 = E(X0) : mean number of customers at service facility
• LOrbit = E(∑m

k=1 Xk) : mean number of customers in orbit
• E(W ) = 1

λ (L0 +LOrbit) : mean sojourn time

In Tables 1-3, the numerical results for m = 1,2 and m = ∞ are obtained by using the
matrix analytic method and for 3 ≤ m < ∞, simulation is used. Simulation models are
developed with ARENA. Simulation run time is set to 11,000 minutes including 1,000
minutes of warm-up period, where the expected value of service time is one minutes. Ten
replications are conducted for each case and the average value and the half length of 95%
confidence interval are obtained. In Table 1, simulation results are compared with the
exact results for correctness of simulation for s = 5, µ = 1.0, ρ = λ

sµ = 0.75 and three
cases of retrial rate γ = 0.5λ = 1.875, λ = 3.75 and 2λ = 7.5.

The parameters used in Tables 2-3 are as follows: s = 5, µ = 1.0, the arrival rate λ is
given by λ = sρ , ρ = 0.5,0.95 and 1.5 and for each λ , four cases of retrial rates γ = 0.1λ ,
λ , 2λ and 10λ are considered.

Numerical results show that as m increases, PB, L0 and LOrbit are increasing but the
blocking probability PL is decreasing. Furthermore, as the retrial rate γ increases, LOrbit
is increasing but PL is decreasing.
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Table 2. System characteristics for s = 5, µ = 1.0
ρ m γ PB PL L0 LOrbit E(W )

0.5 1 0.25 0.087 0.015 2.464 0.874 1.335
2.5 0.085 0.040 2.400 0.085 0.994
5. 0.082 0.049 2.377 0.041 0.967
25. 0.075 0.063 2.340 0.007 0.940

5∗ 0.25 0.093 0.000 2.507 1.135 1.457
2.5 0.104 0.005 2.483 0.211 1.081
5.0 0.105 0.013 2.464 0.133 1.041
25. 0.098 0.031 2.424 0.064 0.997

10∗ 0.25 0.093 0.000 2.507 1.135 1.457
2.5 0.107 0.001 2.497 0.234 1.096
5.0 0.112 0.003 2.494 0.171 1.067
25. 0.110 0.015 2.467 0.102 1.028

∞ 0.25 0.093 0.000 2.500 1.131 1.452
2.5 0.109 0.000 2.500 0.244 1.098
5. 0.115 0.000 2.500 0.190 1.076
25. 0.125 0.000 2.500 0.144 1.057

∗ simulation results.

Table 3. System characteristics for s = 5, µ = 1.0
ρ m γ PB PL L0 LOrbit E(W )

0.95 1 0.475 0.391 0.179 3.909 3.901 1.646
4.75 0.335 0.221 3.685 0.334 0.849
9.5 0.317 0.239 3.631 0.159 0.797
47.5 0.280 0.256 3.530 0.028 0.751

10∗ 0.475 0.690 0.039 4.576 25.002 6.213
4.75 0.593 0.095 4.285 2.847 1.503
9.5 0.545 0.129 4.149 1.508 1.187
47.5 0.394 0.206 3.775 0.298 0.857

30∗ 0.475 0.779 0.006 4.718 45.01 10.46
4.75 0.726 0.041 4.545 6.566 2.340
9.5 0.684 0.066 4.431 3.715 1.715
47.5 0.525 0.146 4.050 0.880 1.038

∞ 0.475 0.792 0.000 4.736 50.71 11.67
4.75 0.820 0.000 4.704 16.05 4.369
9.5 0.820 0.000 4.658 13.05 3.729
47.5 0.749 0.000 4.252 7.534 2.481

∗ simulation results.
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Table 4. System characteristics for s = 5, µ = 1.0
ρ m γ PB PL L0 LOrbit E(W )

1.5 1 0.75 0.620 0.405 4.464 6.196 1.421
7.5 0.552 0.427 4.298 0.552 0.647
15. 0.522 0.436 4.232 0.261 0.599
75. 0.474 0.448 4.139 0.047 0.558

10∗ 0.75 0.906 0.348 4.898 61.04 8.784
7.5 0.865 0.357 4.832 5.944 1.434
15. 0.810 0.368 4.731 2.878 1.016
75. 0.622 0.414 4.389 0.521 0.654

30∗ 0.75 0.965 0.339 4.964 182.6 24.99
7.5 0.959 0.340 4.957 18.05 3.065
15.0 0.943 0.341 4.932 8.846 1.842
75. 0.790 0.378 4.669 1.676 0.845

50∗ 0.75 0.979 0.336 4.978 303.4 41.15
7.5 0.977 0.336 4.976 30.08 4.683
15.0 0.972 0.337 4.970 14.96 2.654
75. 0.867 0.362 4.794 2.864 1.020

∗ simulation results.

6 Conclusions
In this work, the effects of restricting the number of retrials are investigated numerically and we

show that some performance measures severely depend on the parameter m, the maximum number
of retrial permitted to a customer. Our study is the first step for further research related with the
model considered in this paper and is to give an insight to estimating even roughly the behavior of
the system. There are a number of further research issues that remain to be addressed. One of them
is to develop a simple approximation method which can be applied to the general system. Our results
may be used for error analysis of the approximation. In practical situation such as wire less local
area networks, it is important to determine the threshold value m under the given loss probability PL
or blocking probability PB. It is necessary to develop an effective way for determining the value m
as a function of PL or PB.
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