The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31-Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 182-189

Approximate maximum edge coloring within
factor 2: a further analysis”

Wangsen Feng Ping Chen Bei Zhang

Computing Center, Peking University, Beijing 100871, China
E-mail : {fengws,pchen,zb} @pku.edu.cn

Abstract

In [1], Feng et al. propose a polynomial time approximation algorithm for a novel maximum
edge coloring problem which arises from the field of wireless mesh networks [2]. The problem is
about coloring all the edges in a graph and finding a coloring solution which uses the maximum
number of colors with the constraint, for every vertex in the graph, all the edges incident to it are
colored with no more than g(g € Z, g > 2) colors. The case g = 2 is of great importance in practice.
The algorithm is shown to achieve a factor of 2.5 for case ¢ =2 and 1+ % for case g > 2
respectively. In this paper, we give a further analysis of the algorithm and improve the ratio from 2.5
to 2 for case g = 2. The ratio 2 is shown to be tight with a tight example. We also study maximum
edge coloring in complete graphs and trees.

1 Introduction

Graph coloring problems occupy an important place in graph theory. Generally, there
are two types of coloring: vertex coloring and edge coloring. For vertex coloring, Brooks
[4] states that ¥ (G) < A(G) for any graph G except complete graphs K, and odd circles
Cot+1, where chromatic number ¥ (G) is the minimum number of colors needed in a vertex
coloring of graph G. Karp [5] proves that to determine x(G) is an NP-hard problem
. If P # NP holds, Garey and Johnson [6] point out that there is even no polynomial
time approximation algorithm with ratio 2. However, Turner [7] designs an algorithm of
complexity O(|V|+ |E|logk) and with probability almost 1 to color a given k-colorable
graph with k colors for the case that k is not too large relative to |V|. For edge coloring,
Vizing [8] states that for any graph G, either x/(G) =A(G) or x/(G) = A(G) + 1, where
chromatic index x/(G) is the minimum number of colors needed in an edge coloring of
G. Holyer [9] proves that it is also an NP-hard problem to determine XI(G). The proof
of Vizing Theorem yields an approximation algorithm for this problem which finds an
edge coloring solution using A(G) + 1 colors within one of optimal. Recently, Uriel Feige
et al. [10] have investigated the maximum edge ¢-coloring problem in multigraphs. The
problem is to color as many edges as possible using ¢ colors, such that no pairs of adjacent

*Supported by the National High-tech Research and Development Program (863) of China under Grant No.
2006AA01Z160.

Approximate Maximum Edge Coloring Within Factor 2 183

1. If (4 =2) Then
Compute a maximum matching M in G;
Else
Compute a maximum (g — 1)-matching M,_; in G;
2. Assign a new color to each edge in M(M,_1);
3. Delete the edges of M(M, 1) from the original graph G and for each connected
component of the residual graph G’ which is not an isolated vertex, assign to it
a new color;
4. Output each edge with the color assigned to it.

Figure 1: Algorithm 1

edges are colored with the same color. They show that the problem is NP-hard and design
constant factor approximation algorithms for it.

The problems mentioned above are all traditional coloring ones, they obey the same
rule: no two adjacent vertices(edges) are colored with the same color. However, in the
maximum edge coloring problem proposed in [1], two adjacent edges are not necessary
to be colored with different colors. It is defined as follows:

Maximum edge coloring problem: Given a connected undirected simple graph G =
(V,E) and a positive integer ¢ > 2, color all the edges in E, with the constraint, for every
vertex in V, all the edges incident to it are colored with no more than g colors, ask for a
solution which uses maximum number of colors.

The problem arises from the field of wireless mesh networks. Because the mesh
routers in a wireless mesh network often have two network interface cards, the case g =2
is very important. For more details, readers are referred to [2, 3]. In [1], a polynomial
time approximation algorithm (Algorithm 1) is designed for the problem (Figure 1). It
achieves an approximation factor of 2.5 for case ¢ = 2 and a factor of 1+ ﬁ for
case g > 2. In this paper, we prove that Algorithm 1 is a 2-approximation algorithm for
case g = 2 and show the ratio 2 is tight. For complete graphs and trees, polynomial time
accurate algorithms are found for them when g = 2.

In order to have a better understanding of Algorithm 1, let’s review the maximum
b-matching problem simply.

Maximum b-matching problem: Given an undirected graph G = (V,E) and a func-
tion b: V — Z* specifying an upper bound for each vertex, the maximum b-matching
problem asks for a maximum cardinality set M C E such that Vv € V, deguy(v) < b(v).

The results on matchings are strongly self-refining. By applying splitting techniques
to ordinary matchings, maximum b-matchings can be found in polynomial time too.
Gabow [13] designed an algorithm of complexity O(|V||E|log|V|) for the problem in
1983.

Now, we introduce some notations frequently used below. ALG(G) is used to denote
the number of colors used in the solution given by Algorithm 1 on an input graph G;
OPT (G) to denote the number of colors used in an optimal coloring solution of G. For
more knowledge on approximation algorithms, readers are referred to [11].

184 The 7th International Symposium on Operations Research and Its Applications

1.1 Previous Results

Given an arbitrary connected graph G, suppose the optimal solutions use m colors:
1,2,...,m. Based on the color of each edge, the edge set can be divided into m subsets:
E\,E,,....,E,. Each subset E; denotes the set of edges colored with color i. If we choose
one edge from each subset, the subgraph H induced by these m edges are called “charac-
ter subgraph" of G.

Lemma 1: (Feng et al. [1]) For a character subgraph H of a connected graph
G = (V,E), it satisfies:
DA(H) <g;
2)If g = 2, then H consists of paths and cycles;
)Ifq=2, OPT(G) < |V|.

Lemma 2: (Feng et al. [1]) Given a vertex cover V* of a graph G with |V*| =k, let
H be the subgraph induced by V* in G. Then:
1OPT(G) < kg;
2)If H has a matching of size m, then OPT (G) < kq —m;
3)If g =2 and H is connected, then OPT (G) < k—+1;
4)If g =2 and H has | connected components (1 <1 < k), then OPT(G) < k+1.

Theorem 1: (Feng et al. [1]) For any connected graph G, Algorithm I achieves an
approximation factor of 2.5 for case ¢ = 2 and a factor of (1+ ﬁ) for case g > 2.

2 Further analysis of Algorithm 1 for case g =2

Before discussing general graphs, let’s see what will take place if input graphs are re-
stricted to be bipartite graphs. In bipartite graphs, there exists the equation maXmasching m|M| =
MiNyertex cover U|U|. Combined with Lemma 2, it is easy to see that

ALG(G) ~— |Mpax|

In fact, for general graphs, we have the same result and this ratio is better than that in
Theorem 1.

Theorem 2: For any connected graph G, Algorithm 1 achieves an approximation
factor of 2.
Proof: Let OPT(G) = m and H be a character subgraph of G. According to Lemma
1, H is a set of paths and cycles. The theorem is proved by two steps:
1) Construct a matching in G with size > | 7 | based on H.
2) According to the result in 1), we can easily draw the conclusion:
OPT(G)
— <2 2
ALG(G) = @
Step 1): A path of odd(even) length is called an odd(even) path. Similarly, a cycle
of odd(even) length is called an odd(even) cycle. Denote odd paths, even paths, odd

Approximate Maximum Edge Coloring Within Factor 2 185

cycles and even cycles in H by OP,, EP;, OC; and EC; respectively. Use [(OP;) (0 <i <
p1), L(EP}) (0 < j < p2), I(OCy) (0<s<cy)and [(EC) (0 <t <) to denote the
lengths of OF;, EP;, OC; and EC; respectively. Clearly, for the paths or cycles of even
length 2k, the size of their maximum matchings is k. For the paths of odd length 2k + 1,
the size is k+ 1, and for cycles of odd length 2k + 1, the size is k. We can denote the
number of edges in H, m, as follows:
P1 P2 Cl 2
m=Y 1(OP,)+ Y I(EP;))+ Y 1(0C)+ Y I(EC)) 3)
i=1 j=1 s=1 =1

And the size of a maximum matching My in H is:

<

1 C] 2

[1(OP) +1] + f %J(Epj) +Y %[Z(OCS) -1]+Y %I(EC,))

j=1 s=1 t=1

\Mu| =

I
N —

I

Case 1: Clearly, if ¢; =0, then [My| > | 5 |. My is the matching we want to construct.

Case 2: When c¢| = 1, there is one odd cycle, OCy, in H. We can construct a matching
M with [M | > | %] as follows:

subcase 1): G = H = OCj, which means the original graph is just an odd cycle, then
we can let M be a maximum matching of OC;. Clearly, [M | > [F].

subcase 2): OC] is a real subgraph of G, which means there is at least one vertex
v € V(G) and v ¢ V(OC)), since there cannot be any other edge among the vertices of
V(OC}) in G. Clearly, there is no edge in G among those vertices in H with degy (v) = 2.
For each 1-degree vertex in a path of H, it cannot be adjacent to two 2-degree vertices in
distinct connected components of H. Otherwise, it will contradict the fact that the optimal
coloring solution is feasible. Because G is connected and G # OC|, we can always find
a vertex vy in an odd cycle in H and v; connects to an outside vertex v, which is not
in the cycle. Based on the above analysis, v, must belong to one of the following three
sets: Vi={the vertices not in H}; V,={the 1-degree vertices in even paths in H }; V3={the
1-degree vertices in odd paths in H}. Now, let’s discuss how to construct M.

HIfwvy e V1, construct a maximum matching MC of OC leaving v; as an unsaturated
vertex, let My = Mc U{e = (vi,v)}. Clearly, M| = 3[I(OC1) — 1]+ 1 > L1(0Cy).

2) If vy € V5, construct a maximum matching M¢ of OC) leaving vy as an unsaturated
vertex, find a maximum matching Mp of the even path EP; leaving v, as an unsaturated
vertex, let M. = Mc UMpU {e = (vi,v2)}. Clearly, |M| = focy) -1+ 1EP)+1>
s[i(oC) +1(EP)).

3) If v, € V3, construct maximum matchlngs Mc,Mp of OC 1 and the odd path OP; re-
spectively, letM/C = McUMp. Clearly, C\ =1{(oc))-1]+1[(or)+1]=L[1(0Cy)+
1(OPy)].

186 The 7th International Symposium on Operations Research and Its Applications

For the rest connected components in H, find one maximum matching My in them, let
/ / . y /. .
M = Mg UM,. Obviously, |[M | > [§], M is the matching we want to construct.

Case 3: Now, let’s discuss the case ¢; > 1. First a new graph G/H is constructed by
contracting(shrinking) every connected component H; of H into a new vertex v; (1 <i <
p1+p2+ci+c2). Clearly, G/H has vertex set (V(G)/V(H))U{vi,v2...,Vp, 4 pytei+er b
and for each edge e in G, an edge of G/H is obtained from e by replacing any end point
in H; by the new vertex v;. (Here we ignore loops and multiple edges that may arise.)
Obviously, G/H is also connected.

When there is an edge in G/H between an original vertex v, which is not in H but
in G, and a new vertex coming from H;, it means there is an edge in G between v and a
vertex in H;. When there is an edge in G/H between a new vertex from H; and another
new vertex from Hj, it means there is an edge in G between a vertex in H; and a vertex
in H;. Clearly, there is no edges among the new vertices from cycle components in G/H
and each such vertex only connects to vertices which are either new vertices from a path
component or original vertices. For convenience, new vertices from path components and
original vertices are called as compatible vertices. For each compatible vertex, it can be
adjacent to two new vertices from cycle components at most. For one new vertex from a
path component, if it connects to two new vertices from cycle components in G/H, then
it must be that each of its two 1-degree end points connects to a vertex in one of the two
cycle components in G respectively.

Denote by U = {uy,us, ..., ucl} the set of new vertices from odd cycles. Then we in-
troduce a procedure to extract a set of compatible vertices from G/H which can dominate
U. The graph output by the procedure is called matching graph B. (See Figure 2)

1. B=20;
2. while (U # 0)
{
1)Take an element u from U, scan its neighbors in G/H;
2)if (u is adjacent to a compatible vertex v by edge ¢ and v doesn’t connect to any
other new vertex from odd cycle)
then
{Add u,vand einto B,U =U —{u}; }
else if (u is adjacent to a compatible vertex v by edge e and v also connects to an-
other new vertex from odd cycle which has been added into B)
then
{Add u,vand einto B,U =U —{u}; }
else (in this case, u must only connect to those compatible vertices which connect
to two elements which are still in U at this time)
{ Suppose u is adjacent to a compatible vertex v by edge ¢; and v also connects to
another new vertex ' in U by edge e;.
Add u,u',vand ey, e; into B, U =U —{u,u'}. }
}

Approximate Maximum Edge Coloring Within Factor 2 187

Vv

L ACA

DREEERXEIN

u'

Figure 2: Matching graph B: the filled vertices are new vertices from odd cycles, the
empty ones correspond to compatible vertices.

3. output B.

For u; in a path of length 1 in B, the case is similar to the case ¢; = 1. We emphasize
the case of u; in a path of length 2 in B. When y; is in a path of length 2, it means two new
vertices from odd cycles connect to the same compatible vertex. Denote by OCy,O0C; the
two odd cycles. Now, let’s discuss how to construct M.

1) If the compatible vertex is an original vertex, say v, then we can always find v;
in OCy, vo in OC,, which connect to v in G. Construct a maximum matching M¢ of
OCj and OC; leaving vy as an unsaturated vertex, let M/C =McU{e = (v,v1)}. Clearly,
IMc| = 3[(1(0C1) = 1)+ (1{0C2) —)] + 1 = F[1(OC1) +1(OC2)].

2) If the compatible vertex is a new vertex from an even path EP;. Then we can
always find v in OC1, v in OC;, which connect to the two 1-degree nodes, v3,v4, in EP;
in G respectively. Construct a maximum matching M¢c of OC; and OC; leaving vy, v
as unsaturated vertices, find the maximum matching Mp in EP; leaving v3 as a saturated
vertex, let M. = Mc UMp U {e; = (v1,v3)}. Clearly, M| = L[(1(OC1) — 1) + (1(0C3) —
D]+ 3(EP) +1=1[1(0C)) +1(0C) +I(EP)).

3) If the compatible vertex is a new vertex from an odd path OP;. Then we can
always find v; in OCy, v, in OC,, which connect to the two 1-degree nodes, v3,v4, in
OP; in G respectively. Construct a maximum matching M¢ of OC; and OC; leaving
V1, Vv as unsaturated vertices, find the maximal matching Mp in OP) leaving v3,v4 as un-
saturated vertices, let M/c =McUMpU{e; = (vi,v3),e2 = (v2,v4)}. Clearly, |M/C\ =
%[(I(OQ) -1+ ((0G)—1)]+ %[I(OP]) —1]4+2> %[l(OCl)—I-l(OCz) +i(om)).

Thus we can always construct a matching M’ of G with size > |5] as follows:

1. Induce the subgraph H;

2. if (¢; = 0) then { let M' = My; }
else if (G is an odd cycle)
then { let M be a maximum matching of G; }
else {
1) shrink G into G/H;
2) extract the matching graph B from G/H;

188 The 7th International Symposium on Operations Research and Its Applications

Figure 3: tight example for Algorithm 1

3) for each connected component in B, construct M/c as above;

4) for the rest connected components in H, which is not in B, construct one maxi-
mum matching Mg in them;

5)letM = (UM) UMg;

}

Step 2): Since M is a maximum matching of G, it is easy to see:

OPT(G) < m < lm < m < mo_,)
ALG(G) ~ [M|+1 ~ M'|+1 ~ [F]+1 7~ m/2

Here, we assume that the residual graph G = G — M has at least one edge. Because
if G has no edge, M = G, thus A(G) < 2. This case is trivial: ALG(G) = OPT (G) = |E|,
Theorem 2 follows immediately. 0

The following graph gives a tight example for Algorithm 1.

Example 1: In the graph shown in Figure 3, the set of vertical edges is a maximum
matching of G; on the other hand, G can be colored with 2m colors at most. Thus,
ALG(G) =m+1, OPT(G) =2m.

3 Maximum edge coloring in complete graphs and trees
For complete graphs and trees, we can get an accurate solution when g = 2. Obviously,
OPT (K3) = 3. For K,,(n > 4), Theorem 3 stands.
Theorem 3: For a complete graph K, (n > 4), OPT (K,) = | 5] + 1.

A vertex in a tree is called an internal vertex, if and only if it is of degree at least two.
If a tree is just an edge, then there is no internal vertex in it.

Theorem 4: For any tree T, OPT(T) = |Viy| + 1, where V,, is the set of internal
vertices in T.

References

[1] Wangsen Feng, Li’ang Zhang, Wanling Qu and Hanpin Wang: Approximation algorithms for
maximum edge coloring problem. TAMC 2007, LNCS 4484: 646-658.

[2] Ashish Raniwala, Tzi-cker Chiueh: Architecture and algorithms for an IEEE 802.11-based
multi-channel wireless mesh network. INFOCOM 2005: 2223-2234.

Approximate Maximum Edge Coloring Within Factor 2 189

(3]

(4]

(5]

(6]

(7]
(8]

(9]
(10]

(11]
[12]

(13]

Ashish Raniwala, Kartik Gopalan, Tzi-cker Chiueh: Centralized channel assignment and rout-
ing algorithms for multi-channel wireless mesh networks. Mobile Computing and Communi-
cations Review 8(2): 50-65; 2004.

Brooks, R.L. On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37:194-197,
1941.

Karp, R.M. Reducibility among combinatorial problems. In: Complexity of computer compu-
tations (Eds. R.E.Miller and J.W.Thatcher.) Plenum Press, New York, 1972: 85-103.

Garey, M.R. and Johnson, D.S. The complexity of near optimal graph coloring. J. ACM 23:
43-49 1976.

Turner, J.S. Almost all k-colorable graphs are easy to color. J. Algor. 9: 63-82, 1988.

Vizing V.G. On an estimate of the chromatic class of a p-graph. (in Russian) Diskret. Analiz.
3: 25-30, 1964.

Holyer, I.J. The NP-completeness of edge-coloring. SIAM J. Comp. 10: 718-720, 1981.

Uriel Feige, Eran Ofek and Udi Wieder: Approximating maximum edge coloring in multi-
graphs. APPROX 2002: 108-121.

Vijay V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001.

S. Micali, Vijay V. Vazirani. An 0(|V|% |E|) algorithm for finding maximum matching in
general graphs. Proc. 21%" IEEE FOCS, 1980: 17-27.

H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems. Proc. 15" ACM STOC, 1983: 448-456.

