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Abstract We study a single-product periodic-review inventory system with multiple types of re-
turns. The serviceable products used to fulfill stochastic customer demand can be either manufac-
tured/ordered, or remanufactured from the returned products, and the objective is to minimize the
expected total discounted cost over a finite planning horizon. We show that, under some circum-
stances but not all, the optimal policy has a simple form and can be completely characterized by
a sequence of constant control parameters. However, in some other scenarios, the optimal policy
can be quite complicated and control parameters are state-dependent. We present a partial char-
acterization on the optimal control policy for the general case when there are only two types of
returns.
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1 Introduction
In this paper, we study a periodic-review single-product inventory system with mul-

tiple types of returns. Due to differences in returned products, prior to remanufacturing,
the company has to diagnose and sort the returned products based on their operational
conditions (See examples and discussion on the returned products condition variability in
Guide et al. 2003 and Galbreth and Blackburn 2006). Different returned products usu-
ally require different actions and incur different remanufacturing costs, e.g., the returned
products at worse conditions incur a higher remanufacturing cost. For convenience, in
this paper the returns of different physical conditions are referred to as different types of
returns.

Following Simpson (1978), Inderfurth (1997), DeCroix (2006) and DeCroix and Zip-
kin (2005), the demands and returns in different periods are independent random variables
but they could be correlated in the same period. The assumption of independence between
returns and past sales will be reasonable if the sold products are widely spread and there
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are usually large quantities of sold products in the market (See also Fleishmann 2000
for a detailed justification of this assumption). The serviceable products used to fulfill
customer demand can be either manufactured/ordered, or remanufactured from any type
of the returned products. The objective is to characterize the optimal inventory replenish-
ment and remanufacturing policy so that the total discounted production, remanufacturing
and inventory cost over a finite planning horizon is minimized.

This work is motivated by a project on inventory management with a large energy
company. The company provides service on, among other things, meters and transform-
ers for private houses and business buildings in the southeast United States. The meters
and transformers are owned by the energy company. The company has several geograph-
ically located distribution centers, and one warehouse/service center located in central
North Carolina. All failed meters/transformers are shipped to the warehouse/service cen-
ter, diagnosed on operational conditions, and stored in inventory. Returns with very bad
conditions are disposed. The company’s daily operation is based on an inventory control
control system called “Passport", which manages the replenishment of stock levels. How-
ever, the system does not take into consideration the returned products, which account for
over a third of the company’s total business. The problem the company faces is, how to
make remanufacturing decisions of the various types of returns jointly with replenishment
decision to minimize total cost?

We formulate an inventory control model with multiple types of returns and investi-
gate the structural properties of the cost functions. These properties enable us to char-
acterize the optimal inventory polices for the system. We find that the structure of the
optimal policy for the system with a single type return, that was established by Simpson
(1978), cannot be extended to the system with multiple types of returns in general. We
show that, in some scenarios, the optimal policies are simple and can be completely deter-
mined by a sequence of state-independent parameters. But in others, the optimal policies
can be quite complex and the control parameters depend on the system states, i.e., both
the inventory levels of serviceable and returned products. We present a partial characteri-
zation on the optimal control policy for the general case when there are only two types of
returns.

The rest of this paper is organized as follows. In Section 2, we introduce the model
and give the mathematical formulation. In Section 3, we identify the parameter range and
characterize the state-independent optimal inventory and remanufacturing policies, while
in Section 4, we show that outside of the parameter range, the optimal control policies are
state-dependent. Section 5 concludes the paper.

Throughout the paper, we use terms “remanufacturable products” and “returns”, “re-
manufacture" and “repair", and “production” and “manufacturing” interchangeably. Bold-
face notation indicates row vector and a function is increasing in a vector means that it is
increasing in every component of the vector.“Increasing" and “decreasing" are used in a
non-strict sense, that is, they represent “nondecreasing" and “nonincreasing" respectively.

2 The Model
Consider a periodic review inventory/production system with a planning horizon of

N periods, indexed by 1,2, . . . ,N. The manufacturer produces a single product to satisfy
market demand. In each period, the manufacturer receives random customer demand for
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serviceable products as well as random customer returns of remanufacturable products.
The returned products can be brought back to their working condition by remanufacturing
that may involve operations such as disassembly, overhaul, repair, and replacement. The
returned products are classified into K different types based on their physical conditions.
The manufacturer keeps inventories for serviceable products and for each type of returned
products. A serviceable product can be either manufactured from raw materials or reman-
ufactured from each type of returned product. Excess demand is fully backlogged.

Let Dn be the demand for period n, and Rn,k the number of type k returns in period n,
k = 1, . . . ,K. We assume that the demands D1,D2, . . . as well as the returns R1,k,R2,k, . . .
are i.i.d. continuous random variables, but Dn and (Rn,1, . . . ,Rn,K) can have an arbitrary
joint probability distribution for each period n. The unit production cost is p and the unit
remanufacturing cost for a type k return is rk, k = 1, . . . ,K. Note that in practice, reman-
ufacturing process often incurs more costs than just remanufacturing cost, for example,
costs of collecting returned products, diagnosing, sorting, etc. which are actually hap-
pening before remanufacturing operations. Here, we simply use one single variable cost
rk to partially reflect this nature. In addition, it costs sk, k = 1, . . . ,K to keep one unit of
type k returned product per period in stock and the storage cost for returned products can
be either higher or lower than the holding cost rate of serviceable products. Here sk can
either represent direct physical storage costs or any indirect cost stemming from holding
the unit. The following two arguments can be used to justify different storage costs for
different kinds of returns. First, the storage cost often is interpreted as a proxy of money
invested on the returned unit. As the remanufacturing costs of different returns are not
identical while the selling prices of the serviceable products are the same, the financial
loss due to tied-up capital (the selling price minus the remanufacturing cost) is naturally
different. Second, our model also resembles the inventory systems with recycling or prod-
uct recovery operations that recover materials and parts from old or outdated products
(including reuse of parts and products). In such case, the different types of returns may be
different products but share the same component For example, PC components in Taiwan
are mandated to be recycled, and mostly, to extract for metals or other components. There
are different types of returns faced by the recycling operator: Notebook computer, main
board, hard disk, etc. The Environmental Protection Administration (EPA) of Taiwan pro-
vides typical physical storage costs for these different returns(NT/unit, 35 NT=1 USD):
Notebook computer 31, main board 38, PC hard disk 55, power supplier 13, etc.(Lee et
al. 2000)

We use G(·) to denote the expected one-period convex serviceable inventory holding
and customer backlog cost. A typical example is G(x)= hE[max{x−D,0}]+bE[max{D−
x,0}], where x is the inventory level of serviceable product at the beginning of the period,
D is the one-period demand, and h and b are the holding and shortage cost rate. But G(·)
can be more general.

The unit production cost is higher than the remanufacturing cost of any returned prod-
ucts, i.e., p > rk for all 1 ≤ k ≤ K. If this is not true, then remanufacturing would never
be economical. Without loss of generality, we index the returned products according to

(1−α)r1− s1 ≤ ·· · ≤ (1−α)rK − sK ,

where α is the discount factor, i.e., 0≤α ≤ 1. This means, loosely speaking, when taking

Optimal Control Policy for Stochastic Inventory Systems 27



Return
products

R
K

Remanufacturing

Manufacturingtype-K return J
K

Serviceable inventory I

type-m return J
k

R
k

Demand D

R
1

type-1 return J
1

Figure 1: An inventory system with K types of returns

both remanufacturing and holding cost into consideration, type 1 returns have the highest
priority to be remanufactured while type K returns have the lowest.

The returned products are not allowed to be disposed. Such systems have their prac-
tical meaning. For instance, over 99% of sources from the end product by Fuji-Xerox
are reused rather than disposed in the Asia-Pacific region, which is 70% of Fuji-Xerox’s
spare parts need (Fuji Xerox 2007). We can also consider that the returned products in
inventory have been processed with some costs. Therefore, they are "filtered" and not
supposed to be disposed.

We assume remanufacturing leadtimes for different types of returns are identical and
the same as production leadtime. We note that if the remanufacturing leadtime is different
from the production leadtime, the optimal policy will become very complicated and the
control parameters are state-dependent even for the single-type return model (Inderfurth
1997). Under the identical leadtime assumption, the system can be transformed into an
equivalent model with zero leadtimes. Hence, for ease of exposition, we focus on the
problem with zero leadtimes, i.e., the quantities manufactured and remanufactured at the
beginning of a period can be used to satisfy demand in the same period. The objective is to
find the optimal production, remanufacturing and inventory control policies to minimize
the expected total discounted cost over a finite planning horizon.

Additional notation that will be used in this paper is summarized in the following. We
let the subscript n denote the period n.

In = the starting inventory level of serviceable product;
Jn,k = the starting inventory level of type k returned product;
Jn = (Jn,1, . . . ,Jn,K);
in = the inventory level of serviceable product after manufacturing and remanufac-
turing decisions but before demand is realized;
jn,k = the inventory level of type k returned product after remanufacturing and dis-
posal decisions but before return occurs;
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jn = ( jn,1, . . . , jn,K);
wn,k = the remanufacturing quantity of type k return;
wn = (wn,1, . . . ,wn,K);
Rn(k) = ∑k

`=1 Rn,`, the total one period return of type 1 to type k.
Rn,k = (Rn,1, . . . ,Rn,k), k = 1, . . . ,K.

The time sequence of events is as follows. At the beginning of each period, the firm
first decides remanufacturing quantities from each type of returned products; second, the
firm decides how much to manufacture from raw material if needed; third, customer de-
mand and product returns are realized; fourth, all costs are calculated. Figure 1 visualizes
such an inventory system with some of the above notation.

Given the starting inventory levels of serviceable products In and returns Jn, let Vn(In,Jn)
be the minimum total discounted cost from period n to the end of the planning horizon.
The dynamic programming formulation of the problem is

Vn(In,Jn) = min
wn, jn,in

{ K

∑
k=1

rkwn,k + p

(
in− In−

K

∑
k=1

wn,k

)
+

K

∑
k=1

sk jn,k

+G(in)+αE[Vn+1(in−Dn, jn +Rn,K)]
}

, (1)

subject to 0 ≤ wn,k = Jn,k− jn,k, jn,k ≥ 0 for k = 1, . . . ,K, and ∑K
k=1 wn,k ≤ in− In. As in

Simpson (1978), we assume VN+1(i, j) = 0 for any i, j.
In (1), the first term inside the brackets is the total remanufacturing cost of returned

products; the second term is the production cost, the third term is the total storage cost
of all returned products; the fourth term is the inventory holding and shortage costs of
serviceable products; and the last term is the minimum discounted expected total cost
from period n + 1 to period N. For the constraints, the first set requires that the reman-
ufactured quantity for type k return be nonnegative and equal to the difference between
its starting inventory level and ending inventory level before demand and return occur
since disposal is not allowed (hereafter we omit “before demand and return occur” unless
confusion may arise); the second set ensures that the ending inventory of type k return is
nonnegative while the last constraint states that the total remanufactured quantity must be
less than or equal to the increment of serviceable inventory level because there may be
some units produced from raw materials.

Depending on the system cost parameters, the control parameters of the optimal poli-
cies can be either state-independent or state-dependent, which will be discussed in the
two subsequent sections separately.

3 State-Independent Optimal Policies
For notational convenience, we will suppress the time index n unless confusion may

arise. Since wk = Jk − jk,k = 1, . . . ,K, the number of units that is produced from raw
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material is i+∑K
k=1 jk− (I +∑K

k=1 Jk). Consequently, the formulation (1) is simplified to,

Vn(I,J) = min
i, j

{
K

∑
k=1

rk(Jk− jk)+ p

(
i+

K

∑
k=1

jk− I−
K

∑
k=1

Jk

)

+
K

∑
k=1

sk jk +G(i)+αE[Vn+1(i−D, j +RK)]

}
, (2)

subject to i+∑K
k=1 jk ≥ I +∑K

k=1 Jk and 0≤ jk ≤ Jk, for k = 1, . . . ,K. To make the system
more amenable to analyze, we define

y0 = i,

yk = i+
k

∑̀
=1

j`, k = 1, . . . ,K, (3)

and

x0 = I,

xk = I +
k

∑̀
=1

J`, k = 1, . . . ,K. (4)

This transformation is critical and it sets the stage for the remaining analysis. We can
interpret x0 (resp. y0) as the starting (resp., ending) serviceable inventory level, xk (resp.
yk) as the starting (resp., ending) aggregate inventory level of serviceable and type 1
to k returned products, k = 1, . . . ,K. By definition, we have x0 ≤ x1 ≤ ·· · ≤ xK and
y0 ≤ y1 ≤ ·· · ≤ yK .

After some algebra and with a slight abuse of notation, we let x = (x0, . . . ,xK), y =
(y0, . . . ,yK), and rewrite (2) as

Vn(x) = min
y
{Hn(y)}− r1x0 +

K−1

∑
k=1

(rk− rk+1)xk +(rK − p)xK (5)

s.t. x0 ≤ y0 ≤ y1 ≤ ·· · ≤ yK ,

xK ≤ yK ,

yk+1− yk ≤ xk+1− xk, k = 0, . . . ,K−1,
where

Hn(y) = (r1− s1)y0 +G(y0)+
K−1

∑
k=1

(rk+1− rk + sk− sk+1)yk +(p− rK + sK)yK

+αE[Vn+1(y0−D,y1 +R1−D,y2 +R(2)−D, . . . ,yK +R(K)−D)].

Note that, in the constraints above, yk ≥ xk is implied by yK ≥ xK together with yk+1−yk ≤
xk+1− xk, for k = 0, . . . ,K−1.

The problem (5) is to minimize a multi-dimensional convex function subject to a set
of linear state-dependent constraints. The optimal solution is, in general, complicated and
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depends on the state x of the system, and the structure of the optimal policy does not have
a simple form. In what follows, we show that when the system parameters satisfy

r1− s1 ≤ r2− s2 ≤ ·· · ≤ rK − sK , (6)

then the optimal strategy has an exceedingly simple structure. This condition will hold,
for instance, when the reparing costs of types 1 to K return are ascending while their
storage costs are descending in the type index. This happens in practice, when type 1
has the best quality (lowest repairing cost) and the storage cost mainly due to the capital
tied-up (interest rate× (p− rk)).

The following result shows the convexity of the value function, which can be easily
proved by induction hence its proof is not given.

Lemma 1.
Vn(x) and Hn(y) are jointly convex functions for all n.

The key for having a simple structure of the optimal control policy is the following
proposition.

Proposition 1. If the system parameters satisfy (6), then, for n = 1, . . . ,N +1, Vn(x) can
be decomposed as Vn(x) = ∑K

k=0 Qn,k(xk), in which Qn,k(·), k = 0, . . . ,K, is a univariate
convex function.

The following is the main result of this section.

Theorem 2.
For the inventory system with K types of product returns and no disposal, suppose the
current state is x (define xK+1 = ∞ and ξn,−1 = ∞). If the system parameters satisfy (6),
then there exists a sequence of constants ξn,K ≤ ξn,K−1 ≤ ·· · ≤ ξn,1 ≤ ξn,0, such that the
optimal inventory levels after decisions, y∗0, . . . ,y

∗
K , are given by the following:

For k = 0, . . . ,K, if ξn,k ≤ xk < ξn,k−1, then y∗0 = y∗1 = · · · = y∗k = xk, y∗k+1 = xk+1,. . .,
y∗K = xK; if xk < ξn,k ≤ xk+1, then y∗0 = y∗1 = · · ·= y∗k = ξn,k, y∗k+1 = xk+1, . . . ,y∗K = xK .

Proof. The following important properties of Hn(y) are essential for the proof of Theorem
2.

Lemma 3.
For n = 1, . . . ,N,

(a) Hn(y) is increasing in y1,y2, . . . ,yK .
(b) ∂Vn(x)/∂xk ≥ rk− rk+1 for k = 1, . . . ,K−1, and ∂Vn(x)/∂xK ≥ rK − p.

Proofs of Proposition 1, Theorem 2, and Lemma 3. In the following, we prove Lemma
3, Proposition 1 and Theorem 2 together by induction on n. Because the proof is rela-
tively long, we first summarize the flow of the proof as follows. We start with showing
Proposition 1 is true for period N + 1 and Part (a) of Lemma 3 is true for period n = N.
Then assume the proposition is true for some n = t + 1 and part (a) of the lemma is true
for n = t for t ≤ N, we show that this implies the theorem for the period n = t (in fact, we
just need to have inductive assumption on the lemma and proposition). After that, based
on the theorem, we show part (b) of the lemma is true for period n = N as well as period
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n = t < N. Finally, we prove that the proposition is true for n = t and, based on part (b),
part (a) is true for n = t−1 so that the proof is complete.

Notice that for period N, as VN+1(x) = 0, the proposition is trivially true. For part
(a) of the lemma, it is not hard to show that HN(y) is increasing in yk, k ≥ 1, from the
condition (6). Part (b) will be shown after we prove the theorem. Suppose Proposition
1 is true for period n = t + 1 and part(a) of Lemma 3 is true at period n = t for t ≤ N.
We next show the policy presented in the theorem is optimal for period n = t. Define the
sequence of constants (ξt,0, . . . ,ξt,K) as follows.

ξt,k = argmin
x

Ht(x,x, . . . ,x,yk+1, . . . ,yK), for k = 0, . . . ,K−1,

= argmin
x

{
(rk+1− sk+1)x+G(x)+

k

∑
l=0

αE

[
Qt+1,l

(
x−D+R(l)

)]}
,

ξt,K = argmin
x

Ht(x,x, . . . ,x) = argmin
x

{
px+G(x)+

K

∑
l=0

αE

[
Qt+1,l

(
x−D+R(l)

)]}
.

Because of Proposition 1, y∗ is the solution of the following optimization problem,

min
y
{Ht(y)} = min

y

{
(r1− s1)y0 +G(y0)+

K−1

∑
k=1

(sk− sk+1 + rk+1− rk)yk

+(p− rK + sK)yK +
K

∑
k=0

αE

[
Qt+1,k

(
yk−D+R(k)

)]}

s.t. yK ≥ xK ;
x0 ≤ y0 ≤ y1 ≤ ·· · ≤ yK ;
yk+1− yk ≤ xk+1− xk, k = 0, . . . ,K−1.

By Part(a) of the lemma, Ht(y) is increasing in y1, . . . ,yK . This and the convexity of Ht(y)
imply ξt,K ≤ ξt,K−1 ≤ ·· · ≤ ξt,1 ≤ ξt,0. Next, we provide the detailed proof for each case
in the theorem for period n = t.

i) If xK ≤ ξt,K < xK+1 = ∞, then x0 ≤ x1 ≤ ·· · ≤ xK ≤ ξt,K . Because Ht(x,y) is a
convex function and increasing in y1, . . . ,yK , ξt,K is the global minimizer under the
constraint y0 ≤ y1 ≤ ·· · ≤ yK . As long as the policy can achieve y0 = y1 = · · ·yK =
ξt,K without violating any other constraints, then it must be optimal. It can be easily
verified that, in this case, all the constraints are satisfied when y∗0 = y∗1 = · · ·= y∗K =
ξt,K .
We show that if ξt,K < xK , then y∗K = xK . We prove this by contradiction. Because
no disposal is allowed, y∗K ≥ x∗K . Suppose y∗K > xK , which implies that we produce
some items. We argue that, this also implies y∗K−1 = y∗K . Because, otherwise, we can
set y∗K to be y∗K−ε (produce less) without violating any constraint, and keep yk = y∗k
for k = 0, . . . ,K−1, which will result in a lower cost as Ht(y) is increasing in yK .
Contradiction! Thereby, y∗K−1 = y∗K > xK . Moreover, because Ht(y0, . . . ,yK−2,y,y)
is also increasing in y, applying the previous argument, we can show that y∗K−2 =
y∗K−1 = y∗K > xK . Repeating the same argument, we can finally reach y∗0 = y∗1 =
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· · ·= y∗K > xK . However, since Ht(x) is increasing in x for x > ξt,K , then y∗0 = y∗1 =
· · · = y∗K − ε (produce less) will result in a lower total cost, which contradicts the
optimality of the original policy. Hence, y∗K = xK .

ii) If ξt,k < xk ≤ ξt,k−1 for k≤ K−1, for k≤ K, then it implies x0 ≤ x1 ≤ ·· · ≤ xk−1 ≤
ξt,k−1. Because ξt,k−1 ≤ ξt,0, it is optimal to increase x as much as possible since
Ht(x, ·, . . . , ·) is decreasing, which implies y∗0 = y∗1. Furthermore, as ξt,k−1 ≤ ξt,1,
Ht(y,y, ·, . . . , ·) is decreasing in y, thus y∗0 = y∗1 = y∗2. Repeat this argument, y∗0 =
y∗1 = y∗2 = · · · = y∗k−1. By applying the similar argument as that in i), we can show
y∗k = xk, . . . ,y∗K = xK . Because Ht(x,x, . . . ,x,xk, . . . ,xK) is decreasing for x < ξt,k−1.
Therefore, y∗0 = y∗1 = · · ·= y∗k−1 = xk and y∗k = xk, . . . ,y∗K = xK .
If xk ≤ ξt,k < xk+1, then y∗k+1 = xk+1, . . . ,y∗K = xK from above analysis. Following
from the same argument as in the previous case, we have y∗0 = y∗1 = · · · = y∗k . But
as xk ≤ ξt,k ≤ xk+1, the objective function Ht(x, . . . ,x,xk+1, . . . ,xK) can achieve its
minimum ξt,k without violating any constraint, so y∗0 = y∗1 = · · ·= y∗k = ξt,k.

iii) If ξt,1 < x1≤ ξt,0, then y∗1 = x1, . . . ,y∗K = xK . Because x0≤ x1≤ ξt,0, Ht(x,x1, . . . ,xK)
is decreasing in x. So y∗0 = x1.

iv) If x1 > ξt,0, then still y∗1 = x1,y∗2 = x2, . . . ,y∗K = xK . However, depending on x0,
y∗0 = max{x0,ξt,0} because Ht(x,x1, . . . ,xK) is convex in x.

Now we are ready to verify Proposition 1 for period n = t. It is sufficient to show that
∂Vt(x)/∂xk only depends on xk, k = 0, . . . ,K. Depending on the value of x, the optimal
policy presented above divides theRK+1

+ into 2(K +1) regions. Within the interior of each
region, it is not hard to see ∂Vt(x)/∂xk only depends on xk, k = 0, . . . ,K, since Ht(y) can
be decomposed by the inductive assumption. So we only need to check the boundaries
between different regions, which may not be differentiable. We use one case to illustrate
that, even at the boundary, Vt(x) can still be decomposed. Other cases can be similarly
proved so we omit them here. Note that at the boundary of xK = ξt,K , the right-sided
derivative is

∂Vt(x)
∂xK

∣∣∣∣∣
xK=ξt,K+

= lim
ε→0

Vt(x0,x1, . . . ,xK−1,ξt,K + ε)−Vt(x0,x1, . . . ,xK−1,ξt,K)
ε

= lim
ε→0

Ht(ξt,K + ε, . . . ,ξt,K + ε)−Ht(ξt,K , . . . ,ξt,K)+(rK − p)ε
ε

= rK +G′(ξt,K)+
K

∑
k=0

αE

[(
Qt+1,k

(
ξt,K −D+R(k)

))′]
,

and the left-sided derivative is

∂Vt(x)
∂xK

∣∣∣∣∣
xK=ξt,K−

= lim
ε→0

Vt(x0,x1, . . . ,xK−1,ξt,K)−Vt(x0,x1, . . . ,xK−1,ξt,K − ε)
ε

= lim
ε→0

Ht(ξt,K ,ξt,K , . . . ,ξt,K)−Hk(ξt,K ,ξt,K , . . . ,ξt,K)+(rK − p)ε
ε

= rK − p,

which is independent of x0, x1, . . . ,and xK−1.
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Recall that we have not shown part (b) of the lemma yet. From the preceding proof, it
should be noted that the proof of optimal policy only relies on part (a) and the Proposition.
We now verify part (b). Based on the optimal policy presented in the theorem for period
N (not rely on the above lemma), the results can be easily shown by taking derivative of
VN(x) as VN+1 = 0. We leave the detailed steps to the reader.

Suppose part (b) is true for n = t + 1, we next prove n = t based on the optimal
policy of the period t proved above. We need to discuss different regions of x since they
result in different Vt(x). To avoid a lengthy proof, we only show this for one region, i.e.,
ξt,1 < x1 ≤ ξt,0. In this case,

Vt(x) = (r1− s1)x1 +G(x1)+
K−1

∑
k=1

(sk− sk+1− rk + rk+1)xk +(sK + p− rK)xK

+
K

∑
k=0

αE[Qt+1,k(xk−D+R(k))]− r1x0 +
K−1

∑
k=1

(rk− rk+1)xk.

Thereby, for k = 1,

∂Vt(x)
∂x1

= r1− s1 +G′(x1)+αE[(Qt+1,0(x1−D))′]+ (−r1 + s1− s2 + r2)
+αE[(Qt+1,1(x1−D+R1))′]+ r1− r2

≥ r1− r2

where the inequality follows from that x1 > ξt,1.
For 1 < k < K,

∂Vt(x)
∂xk

= (sk− sk+1− rk + rk+1)+(rk− rk+1)+αE

[(
Qt+1,k(xk−D+R(k))

)′]

≥ sk− sk+1 +α(rk− rk−1)
≥ (rk− rk+1),

in which the first inequality is due to the inductive assumption and the second one follows
from (1−α)rk− sk ≤ (1−α)rk+1− sk+1.

For k = K,

∂Vt(x)
∂xK

= (p− rK + sK)+αE

[(
Qt+1,K(xK −D+R(K))

)′]
+ rK − p

≥ α(rK − p)+ sK

≥ rK − p,

in which the first inequality follows from the inductive assumption and the second in-
equality follows from rK < p and sK ≥ 0.

So part (b) is proved. Finally, we prove part (a) of lemma for period n = t, which is in
fact implied by part (b) for period t +1. Because from Equation (5), for k = 1, . . . ,K−1,

∂Ht(y)
∂yk

≥ (sk− sk+1− rk + rk+1)+α(rk− rk+1)≥ 0

34 The 7th International Symposium on Operations Research and Its Applications



0

1

2

0

0

1

2

0

1

2

0

1

2

x
0

x
1

x
2

,2n

,1n

,0n

0

1

2

0

2

0

Figure 2: Illustration of the Optimal Policy: K = 2

where the first inequality follows from part (b) and the second inequality follows from
(1−α)r1− s1 ≤ . . .≤ (1−α)rK − sK . Similarly, ∂Ht(y)/∂yK ≥ (p− rK + sK)+α(rK −
p) = (1−α)(p− rK)+ sK ≥ 0. Therefore, part (a) is also valid and the proofs of Lemma
3, Proposition 1 and Theorem 2 are thus completed. ¤

We illustrate the optimal policy for a system with two-type returns in Figure 3.
This optimal policy works as follows. In period n, if the total inventory (both the ser-

viceable products and all returns) level xK is less than ξn,K , then all of the returns should
be remanufactured and some new products should be manufactured to bring the service-
able inventory level to ξn,K . As long as the total inventory level xK is higher than ξn,K , it
is never optimal to manufacture and the firm only needs to consider remanufacturing. In
general, for k = 1, . . . ,K, if the aggregate inventory level of the serviceable and types 1
to k (resp., k +1) returns is less (resp., greater) than ξn,k, then it should remanufacture all
type 1 to k and some type k + 1 returns to bring the serviceable inventory to ξn,k; if the
aggregate inventory level of the serviceable and type 1 to k returns xk is higher than ξn,k
but less than ξn,k−1, then the firm should remanufacture all types 1 to k returns. Finally,
if the aggregate inventory level of the serviceable and type 1 return x1 is higher than ξn,0,
then it should bring the serviceable inventory level to ξn,0 by remanufacturing some type
1 returns if possible. Note that, the optimal policy suggests the firm first remanufacture
type 1 returns, then type 2, type 3, . . ., and finally, type K returns.

We end this section by the following proposition.

Proposition 2. (a) For k = 0, . . . ,K−1, ξn,k is decreasing in rk+1, increasing in sk+1,
increasing in r j and decreasing in s j, for j = 1, . . . ,k.

(b) ξn,K is decreasing in p, increasing in r j and decreasing in s j for j = 1, . . . ,K.

Proof. In the following proof, in order to show the dependence on r j or s j, we include r j
or s j in Vn and Hn whenever needed.

We first show that, for any given k, (Vn(x,rk+1))′′x`,rk+1
= (Qn,`(x,rk+1))′′x,rk+1

≥−1 for
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` ≤ k, which we prove by induction. This is trivially true for N + 1. Suppose this is true
for n+1, then for n,

Vn(x,rk+1) = min
y

{
(r1− s1)y0 +G(y0)+

k−1

∑̀
=1

(r`+1− r` + s`− s`+1)y` +(rk+1− rk + sk

−sk+1)yk +(rk+2− rk+1 + sk+1− sk+2)yk+1 +
K

∑
`=k+2

(r`+1− r` + s`− s`+1)y`

+αE[Vn+1(y0−D, . . . ,yk +R(k)−D,yk+1 +R(k +1)−D, . . . ,yK +R(K)−D,rk+1)]

}

−r1x0 +
k−1

∑̀
=1

(r`− r`+1)x` +(rk− rk+1)xk +(rk+1− rk+2)xk+1 +
K

∑
`=k+2

(r`− r`+1)x`.

From the optimal policy presented in Theorem 2, there are several cases. First, if x` <
ξn,` ≤ x`+1 for any ` ≥ k or ξn,` ≤ x` < ξn,`−1 for any ` ≥ k + 1, the objective func-
tion in the brackets is independent of x j, for j ≤ k, then the result is immediate, i.e.,
Vn(x,rk+1))′′x`,rk+1

= 0 for ` < k and Vn(x,rk+1))′′x`,rk+1
=−1 for ` = k.

Second, if ξn,` ≤ x` < ξn,`−1 for any ` < k+1, then the resulting optimal policy is y∗0 =
y∗1 · · · ,y∗` = x` and y∗`+1 = x`+1, ...,y∗K = xK . As a result, for j < `, Vn(x,rk+1))′′x j ,rk+1

= 0.
For k > j ≥ `,

(Vn(x,rk+1))′′x j ,rk+1

= α

{
E[Vn+1(x`−D, . . . ,x`−D+R(`),x`+1−D+R(`+1), . . . ,xk +R(k)−D,

xk+1 +R(k +1)−D, . . . ,xK +R(K)−D,rk+1)]

}′′

x j ,rk+1

≥ −α ≥−1,

where the first inequality follows from the inductive assumption. For j = k,

(Vn(x,rk+1))′′xk,rk+1

= 1+α

{
E[Vn+1(x`−D, . . . ,x`−D+R(`),x`+1−D+R(`+1), . . . ,xk +R(k)−D,

xk+1 +R(k +1)−D, . . . ,xK +R(K)−D,rk+1)]

}′′

xk,rk+1

−1

≥ −α ≥−1.

Third, if x` < ξ` ≤ x`+1 for ` < k, then the optimal policy is y∗0 = y∗1 = · · ·= y∗` = ξ`,
` < k and y∗`+1 = x`+1, ...,y∗K = xK . Hence, for j ≤ `, Vn(x,rk+1))′′x j ,rk+1

= 0; for k >

j > `, Vn(x,rk+1))′′x j ,rk+1
= αE[Qn+1, j(x−D + R( j),rk+1)]′′x,rk+1

≥ −1 by the inductive
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assumption; finally, for j = k, similar to the previous argument, (Vn(x,rk+1))′′xk,rk+1
≥

−α ≥−1. So we complete the induction.
Note that ξn,k is the solution of

(Hn(y,y, . . . ,y,yk+1, . . . ,yK ,rk+1))′y =

[
G(y)+(rk+1− sk+1)y

+(rk+2− rk+1 + sk+1− sk+2)yk+1 +
K

∑
`=k+2

(r`+1− r` + s`− s`+1)y`

+αE[Vn+1(y−D, . . . ,y+R(k)−D,yk+1 +R(k +1)−D, . . . ,yK +R(K)−D,rk+1)]

]′

y

= G′(y)+ rk+1 +αE[
k

∑̀
=0

Qn+1,`(y−D+R(`),rk+1)]′ = 0

Based on the result we just showed, the left hand side of the last equality is increasing
in rk+1 and so ξn,k is increasing in rk+1 by the convexity.

The remaining parts of the proposition can be similarly proved and we leave the details
to the reader. ¤

4 State-Dependent Optimal Policies
In this section, we investigate the optimal policy for systems in which condition (6),

i.e., r1 − s1 ≤ r2 − s2 ≤ ·· · ≤ rK − sK , is not satisfied. We show that in this case the
simple structure of the optimal control policy presented in the previous section is no longer
true, and its optimal policy is a very complicated, state-dependent, policy. For ease of
exposition, in this section we only consider two types of returns K = 2. That is, we
consider a system whose parameters satisfy (1− α)r1 − s1 ≤ (1− α)r2 − s2 but r1 −
s1 > r2− s2. We partially characterize the structure of the optimal control policy for this
system.

With only two types of returns, the optimality equation (5) is reduced to

Vn(x) = min
y
{Hn(y)}− r1x0 +(r1− r2)x1 +(r2− p)x2 (7)

s.t. y2 ≥ x2,

yk− yk−1 ≤ xk− xk−1, for k = 1,2
x0 ≤ y0 ≤ y1 ≤ y2,

where
Hn(y) = (r1− s1)y0 +G(y0)+(r2− s2− (r1− s1))y1 +(p− r2 + s2)y2

+αE[Vn+1(y0−D,y1 +R1−D,y2 +R(2)−D)]. (8)

Note that x = (x0,x1,x2) and y = (y0,y1,y2).
In the following, we first provide an example demonstrating that the optimal policy is

not a simple threshold type, and then we present a partial characterization to the optimal
control policy.
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Example 1.
Consider a system with two types of returns and parameters r1 = 4,r2 = 2,s1 = 2,s2 =
1, p = 5,α = 1, G(x) = 3E[max{x−D,0}] + 5E[max{D− x,0}]. One period demand
is Poisson distributed with rate 10, type 1 and type 2 returns have Poisson distributions
with rates 3 and 4, respectively. Let N = 2, then at period 1, the systems states and the
corresponding optimal strategies are given in Table 1.

Table 1: An Example with State-Dependent Optimal Policy

(x0,x1,x2) (y∗0,y
∗
1,y

∗
2)

(4,14,17) (12,14,17)
(4,15,16) (13,15,16)
(4,15,17) (13,15,17)
(4,15,18) (12,15,18)
(4,15,19) (12,15,19)

It can be seen from the table that the optimal inventory level y∗0 of the serviceable
product no longer follows a remanufacture-up-to policy, but depends on (x1,x2). For
example, if the starting state is (4,15,17), the optimal policy is to remanufacture 9 units
of type 1 return to bring the serviceable inventory level y∗0 to 13. However, if the starting
state becomes (4,15,18), then the optimal policy is to bring the serviceable inventory up
to 12, i.e., y∗0 = 12, instead of 13.

To characterize the optimal policy for such a system, we need to first define

ξn,2 = argmin
x

Hn(x,x,x),

ξn,1(y2) = argmin
x

Hn(x,x,y2),

ξn,0(y1,y2) = argmin
x

Hn(x,y1,y2),

(θn,1(y2),δn,1(y2)) = argmin
x,y

Hn(x,y,y2), (9)

θn,2(Z− z,y2) = argmin
x

Hn(x,x+Z− z,y2),

δn,2(Z− z,y2) = θn,2(Z− z,y2)+Z− z.

Here, with a slight abuse of notation we still use ξn,k to represent the control limits, since
they have parallel meaning to those in Theorem 2, though they depend on the system
states now.

Lemma 4.
For n = 1, . . . ,N,

(a) ξn,1(y2)≥ ξn,2, θn,1(y2)≥ ξn,2, and ξn,0(y1,y2)≥ ξn,2.
(b) ∂ξn,0(y1,y2)/∂y1 ≤ 1.

The relationship between the control parameters specified in this lemma will help us
partially characterize the optimal policy presented in the following.
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Theorem 5.
For the inventory system with two types of returns, there exists a parameter ξn,2 and a set
of functions

ξn,1(y1),ξn,0(y1,y2),δn,1(y2),δn,2(Z− z,y2),θn,1(y2),θn,2(Z− z,y2),

such that, when the current state is (x0,x1,x2), the optimal production/remanufacturing
strategy for period n is determined, according to two possible scenarios, as follows:

i) If x2 < ξn,2, then y∗0 = y∗1 = y∗2 = ξn,2.
(1) θn,1(x2)≥ δn,1(x2)

ii) If ξn,2 ≤ x2 < ξn,1(x2), then y∗0 = y∗1 = y∗2 = x2.
iii) If x1 < ξn,1(x2)≤ x2, then y∗0 = y∗1 = ξn,1(x2),y∗2 = x2.
iv) If ξn,1(x2) ≤ x1, y∗0 = ξn,0(x1,x2) ⊥ [x0,x1], i.e., the closest number in the

interval [x0,x1] with respect to ξn,0(x1,x2), y∗1 = x1, and y∗2 = x2.

(2) θn,1(x2) < δn,1(x2)

ii) If x1− x0 ≥ δn,1(x2)−θn,1(x2), then
(a) if x2 < δn,1(x2), then y∗0 = min{ξn,0(x2,x2),x2},y∗1 = y∗2 = x2.
(b) if x1 < δn,1(x2)≤ x2, then y∗0 = θn,1(x2),y∗1 = δn,1(x2),y∗2 = x2.
(c) if x1 ≥ δn,1(x2), then y∗0 = max{ξn,0(x1,x2),x0},y∗1 = x1,y∗2 = x2.

iii) If x1− x0 < δn,1(x2)−θn,1(x2), then
(a) if x2 < δn,2(x1 − x0,x2), then y∗0 = ξn,0(x2,x2) ⊥ [x0 + x2 − x1,x2],y∗1 =

y∗2 = x2.
(b) if x1 < δn,2(x1− x0,x2) ≤ x2, then y∗0 = θn,2(x1− x0,x2),y∗1 = δn,2(x1−

x0,x2),y∗2 = x2.
(c) if x1 ≥ δn,2(x1− x0,x2), then y∗0 = x0,y∗1 = x1,y∗2 = x2.

To prove Lemma 4 and this theorem, we need to have the following lemma. For
convenience, let Un(y0,y1,y2) = E[Vn+1(y0−D,y1−D+R(1),y2−D+R(2))].

Lemma 6.
For n = 1, . . . ,N,

(a) Hn(y0,y1,y2) is increasing in y2 and Hn(x,y,y) is increasing in y.
(b) ∂Vn(x0,x1,x2)/∂x1 +∂Vn(x0,x1,x2)/∂x2 ≥ r1− p and ∂Vn(x0,x1,x2)/∂x2 ≥ r2− p.
(c) ∂ 2Vn(x0,y1,y2)/∂x2 +∂ 2Vn(x0,x1,x2)/∂x0∂x1 ≥ 0.

We first prove Lemma 4 by assuming Lemma 6 holds true. Then we verify Lemma 6
and the theorem together by induction.

Proofs of Lemma 4, Lemma 6, and Theorem 5.
Suppose Lemma 6 is true. Then, part (a) follows from the convexity of Hn and the

definitions of ξn,1(y2), θn,1(y2) and ξn,0(y1,y2).
For part (b), by definition, ξn,0(y1,y2) is the solution of

∂Hn(y0,y1,y2)
∂y0

= 0.
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Thereby,

(
∂ 2Hn(y0,y1,y2)

∂y2
0

∂ξ n,0(y1,y2)
∂y1

+
∂ 2Hn(y0,y1,y2)

∂y0∂y1

)∣∣∣∣∣
y0=ξn,0(y1,y2)

= 0,

and

∂ξ n,0(y1,y2)
∂y1

=
−∂ 2Hn(y0,y1,y2)/∂y0∂y1

∂ 2Hn(y0,y1,y2)/∂y2
0

∣∣∣∣∣
y0=ξn,0(y1,y2)

=
−∂ 2Un(y0,y1,y2)/∂y0∂y1

∂ 2Un(y0,y1,y2)/∂y2
0

∣∣∣∣∣
y0=ξn,0(y1,y2)

≤ 1,

where the last inequality follows from the inductive assumption of Lemma 6 part (b). ¤
Now we prove Lemma 6 and the theorem together by induction on n. Firstly, part

(a) of Lemma 6 is true based on and VN+1 = 0. Note that, because condition (6) is not
satisfied, Hn(y0,y1,y2) is not increasing in y1 any more. Suppose part (a) is valid at period
n = t, then we prove the theorem is true for n = t by the following three steps.
Step 1. We first show that, if x2 < ξt,2, y∗0 = y∗1 = y∗2 = ξt,2. Again, because of the inductive
assumption of part (a) Lemma 6, i.e., Ht(y0,y1,y2) is increasing in y2 and Ht(y0,y,y) is
increasing in y, ξt,2 is the global minimizer of Ht(y0,y1,y2) under constraint y0 ≤ y1 ≤ y2.
Hence, if y0 = y1 = y2 = ξt,2 is attainable without violating any other constraint, it must
be the optimal solution. It is not hard to check it is indeed the case when x2 < ξt,2. Thus,
i) is proved.
Step 2. Similar to the proof of Theorem 2, we can show that, if x2 ≥ ξt,2, then y∗2 = x2.
Step 3. For x2 ≥ ξt,2, we fix y∗2 = x2 and the problem becomes

min
y0, y1

Ht(y0,y1,x2)

s.t. y0 ≤ y1

y1− y0 ≤ x1− x0,

x1 ≤ y1 ≤ x2. (10)

Note that Ht(y0,y1,x2) is joint convex in (y0,y1) but may not be increasing in y1. The
following argument is used throughout the remaining proof of this step. By definition,
if (θt,1(x2),δk,1(x2)) can be attained without violating the constraints in (10), it must be
the minimizer; otherwise, the optimal solution must be attained at some boundary of the
regions defined by the violated constraints (some violated constraint must be binding).
Case (1): If θt,1(x2) > δt,1(x2), then under the constraint y0 ≤ y1, the minimizer of
Ht(y0,y1,x2) is y0 = y1 = ξt,1(x2) = argminy Ht(y,y,x2) instead of y0 = θt,1(x2) and y1 =
δt,1(x2).

ii) If ξt,2 ≤ x2 < ξt,1(x2), then x0 ≤ x1 ≤ ξt,1(x2) and (ξt,1(x2),ξt,1(x2)) is not attain-
able. For (10), if first ignore the constraint y1 ≥ x1 and y1− y0 ≤ x1− x0, then at
optimum of the relaxed problem, y0 = y1 or y1 = x2 or both (otherwise, the opti-
mum of the relaxed problem is (ξt,1(x2),ξt,1(x2))). Suppose y0 = y1, then by the
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definition of ξt,1(x2), Ht(x,x,x2) is decreasing for x ≤ ξt,1(x2), so y0 = y1 = x2.
Hence y1 = x2 always holds at optimum. Thus, by the definition of ξt,0(y1,y2),
y∗0 = ξt,0(x2,x2)⊥ [x0 +x2−x1,x2]. Finally, as y1 = x2 ≥ x1, both of the constraints
we relaxed before are not violated, so y0∗ = ξt,0(x2,x2) ⊥ [x0 + x2 − x1,x2] and
y1∗ = y2∗ = x2. Next, we further show that ξt,0(x2,x2) ≥ x2 based on Lemma 4 by
discussing the following two scenarios.
If x2 ≤ δt,1(x2), then following from the inductive assumption of Lemma 6 and
Lemma 4,

∫ δt,1(x2)

x2

∂ξt,0(y,x2)
∂y

dy≤
∫ δt,1(x2)

x2

dy.

Hence, ξt,0(δt,1(x2),x2)− ξt,0(x2,x2) ≤ δt,1(x2)− x2, which implies ξt,0(x2,x2) ≥
x2 +θt,1(x2)−δt,1(x2)≥ x2 since ξt,0(δt,1(x2),x2) = θt,1(x2).
If δt,1(x2) < x2 < ξt,1(x2), then consider the relaxed problem of (10) with con-
straints:

0≤ y1− y0 ≤ x1− x0,x2 ≥ y1.

Because x2 > δt,1(x2), the optimal solution (θt,1(x2),δt,1(x2)) only violates the con-
straint y1 − y0 ≥ 0. Thus, at optimum, y0 = y1. Moreover, because y1 ≤ x2 <
ξt,1(x2), so at optimum y0 = y1 = x2. Notice this optimal solution of the relaxed
problem does not violate the relaxed constraint y1 ≥ x1, so it is optimal for (10).
Combine above two scenarios, the optimal solution of this case is y∗0 = y∗1 = y∗2 = x2.

iii) If x1 < ξt,1(x2) ≤ x2, because (ξt,1(x2),ξt,1(x2)) is the minimizer under the con-
straint y0 ≤ y1 and it can be attained in this case, then y∗0 = y∗1 = ξt,1(x2),y∗2 = x2.

iv) If ξt,1(x2) ≤ x1, then (ξt,1(x2),ξt,1(x2)) is not attainable. We first relax the con-
straint y1 ≤ x2. We note that, at optimum of the relaxed problem, it must be true that
either y∗0 = y∗1 or y∗1 = x1 (otherwise, the relaxed problem can attain (ξt,1(x2),ξt,1(x2))).
Suppose y∗0 = y∗1. Because Ht(x,x,x2) is increasing in x for y0 ≥ x1 ≥ θt,1(x2), we
must have y∗1 = x1. Thus, y∗1 = x1 must hold at optimum. Therefore, by the defini-
tion of ξt,0(x1,x2), y∗0 = ξt,0(x1,x2)⊥ [x0,x1]. Again, as y∗1 = x1 ≤ x2, the constraint
we relaxed is not violated. In such a case, y∗0 = ξt,0(x1,x2) ⊥ [x0,x1], y∗1 = x1, and
y∗2 = x2 is optimal.

Case (2): If θt,1(x2) ≤ δt,1(x2), then if both of them are attainable, at optimum, y∗0 =
θt,1(x2) and y∗1 = δt,1(x2).

ii).a If x1− x0 ≥ δt,1(x2)−θt,1(x2) and x2 < δt,1(x2), then x1 ≤ x2 < δt,1(x2) and x0 <
θt,1(x2). Hence y∗1 = x2 since Ht(y0,y1,y2) is decreasing in y1 when y1 < δt,1(x2).
Then by the definition of ξt,0(y1,y2), y∗0 = ξt,0(x2,x2)⊥ [x0 +x2−x1,x2]. Moreover,
note that, from Lemma 4,

∫ δt,1(x2)

x2

∂ξt,0(y,x2)
∂y

dy≤
∫ δt,1(x2)

x2

dy.

Hence, ξt,0(δt,1(x2),x2)−ξt,0(x2,x2)≤ δt,1(x2)−x2, or ξt,0(x2,x2)≥ x2−(δt,1(x2)−
ξt,0(x2))≥ x2− (x1− x0). Hence, y∗0 = min{ξt,0(x2,x2),x2}.
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ii).b If x1− x0 ≥ δt,1(x2)−θt,1(x2) and x1 < δt,1(x2)≤ x2, then it implies x0 < θt,1(x2).
So y∗0 = θt,1(x2),y∗1 = δt,1(x2) as they are attainable.

ii).c If x1− x0 ≥ δt,1(x2)− θt,1(x2) and x1 ≥ δt,1(x2), then y∗1 = x1, and by definition,
y∗0 = ξt,0(x1,x2)⊥ [x0,x1]. Moreover, since

∫ x1

δt,1(x2)

∂ξt,0(y,x2)
∂y

dy≤
∫ x1

δt,1(x2)
dy

ξt,0(x1,x2)−θt,1(x2)≤ x1−δt,1(x2) or ξt,0(y,x2)≤ x1− (δt,1(x2)−θt,1(x2))≤ x1,
so y∗0 = max{ξt,0(x1,x2),x0}.

iii).a If x1 − x0 ≤ δt,1(x2)− θt,1(x2), then it implies that (δt,1(x2),θt,1(x2)) cannot be
attained. We first relax the constraint that y1 ≥ x1. So at optimum, the relationship
y1 − y0 = x1 − x0 or y1 = x2 or both holds. Suppose y1 − y0 = x1 − x0, then the
unconstrained minimizer is θt,2(x1 − x0,x2). If x2 ≤ δt,2(x1 − x0,x2), then x1 ≤
θt,2(x1−x0,x2), so y∗1 = y∗0 +x1−x0 = x2 because Ht(x,x+x1−x0,x2) is decreasing
in x. Hence, y∗1 = x2 is always valid at optimum. By definition of ξt,0(x2,x2),
y∗0 = ξt,0(x2,x2)⊥ [x0 + x2− x1,x2].

iii).b If x1 − x0 < δt,1(x2)− θt,1(x2) and x1 ≤ δt,2(x1 − x0,x2) ≤ x2, since (θt,2(x1 −
x0,x2),δt,2(x1− x0,x2)) is the optimal point under the constraint y1− y0 ≤ x1− x0,
and can be attained, then y∗0 = θt,2(x1− x0,x2),y∗1 = δt,2(x1− x0,x2).

iii).c If x1− x0 < δt,1(x2)−θt,1(x2) and x1 ≥ δt,2(x1− x0,x2), then x0 ≥ θt,2(x1− x0,x2)
and if we first relax y1 ≤ x2, then at optimum, either y∗1− y∗0 = x1− x0 or y∗1 = x1.
Suppose y∗1 − y∗0 = x1 − x0. Because x1 ≥ δt,2(x1 − x0,x2) implies that Ht(x,x +
x1 − x0,x2) is increasing in x. So y∗1 = x1 must hold at optimum. By definition,
y∗0 = ξt,0(x1,x2)⊥ [x0,x1]. We next further refine y∗0.
If x1 ≥ δt,1(x2), then

∫ x1

δt,1(x2)

∂ξt,0(y,x2)
∂y

dy≤
∫ x1

δt,1(x2)
dy,

which implies ξt,0(x1,x2)− ξt,0(δt,1(x2),x2) ≤ x1− δt,1(x2), or ξt,0(x1,x2) ≤ x1 +
θt,1(x2)−δt,1(x2)≤ x1 + x0− x1 = x0. So y∗0 = x0.
If δt,2(x1− x0,x2) ≤ x1 < δt,1(x2), then consider the relaxed problem of (10) with
only constraints y1−y0 ≤ x1−x0 and y1 ≥ x1. Then, at optimum, because (θt,1(x2),
δt,1(x2) is not attainable, either y∗1 = x1 or y∗1−y∗0 = x1−x0 (or both hold). Suppose
y∗1 − y∗0 < x1 − x0, then y∗1 > x1 because x1 < δt,1(x2). so at optimum, y∗1 − y∗0 =
x1 − x0 As we show y∗1 = x1 Hence, y∗0 = x0 as it does not violate the constraint
y1 ≤ x2.
Overall, by the preceeding argument, the optimal solution in this case is y∗0 =
x0,y∗1 = x1.

We next prove part (b) and (c) given the theorem is valid for n = t ≤ N. When n = N,
following from the optimal policy and VN+1 = 0, it is not hard to show part (b) and (c) are
valid. Suppose they are true for t + 1. For n = t, to show part (b), it is sufficient to show
that

Vt(x0,x1,x2)
∂x1

+
∂Vt(x0,x1,x2)

∂x2
≥ r1− p.
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To simplify the proof, we sketch the idea for (x0,x1,x2) within one specific region among
the regions divided by the optimal policy, i.e., x1 − x0 ≤ δt,1(x2)− θt,1(x2) and x1 ≥
δt,2(x1 − x0,x2). All other regions can be similarly proved. Substitute the optimal so-
lution (y∗0,y

∗
1,y

∗
2) into (7),

Vt(x0,x1,x2) = Ht(y∗0,y
∗
1,y

∗
2)− r1x0 +(r1− r2)x1 +(r2− p)x2

= Ht(ξt,0(x1,x2)⊥ [x0,x1],x1,x2)− r1x0 +(r1− r2)x1 +(r2− p)x2.

Hence, if ξt,0(x1,x2) ∈ [x0,x1],

∂Vt(x0,x1,x2)
∂x1

+
∂Vt(x0,x1,x2)

∂x2

=
∂Ht(ξt,0(x1,x2),x1,x2)

∂x1
+

∂Ht(ξt,0(x1,x2),x1,x2)
∂x2

+ r1− p

=
∂Ht(y0,x1,x2)

∂y0

∣∣∣
y0=ξt,0(x1,x2)

∂ξt,0(x1,x2)
∂x1

+
∂Ht(y0,x1,x2)

∂x1

∣∣∣
y0=ξt,0(x1,x2)

+
∂Ht(y0,x1,x2)

∂y0

∣∣∣
y0=ξt,0(x1,x2)

∂ξt,0(x1,x2)
∂x2

+
∂Ht(y0,x1,x2)

∂x2

∣∣∣
y0=ξt,0(x1,x2)

+r1− p

=
∂Ht(y0,x1,x2)

∂x1

∣∣∣
y0=ξt,0(x1,x2)

+
∂Ht(y0,x1,x2)

∂x2

∣∣∣
y0=ξt,0(x1,x2)

+ r1− p

≥ (−r1 + s1 + p)+α(r1− p)+ r1− p≥ r1− p,

where the last equality is due to the optimality of ξt,0(x1,x2) and the inequality follows
from the inductive assumption.

If ξt,0(x1,x2) < x0, then

∂Vt(x0,x1,x2)
∂x1

+
∂Vt(x0,x1,x2)

∂x2
=

∂Ht(x0,x1,x2)
∂x1

+
∂Ht(x0,x1,x2)

∂x2
+ r1− p

≥ ((−r1 + s1 + s2− r2)+(p− r2 + s2)
+α(r1− p))+ r1− p

≥ r1− p.

If ξt,0(x1,x2) > x1, then y∗0 = y∗1 = x1,y∗2 = x2. Note that for sufficiently small ε > 0,
Ht(x1 + ε,x1 + ε,x2 + ε)≥ Ht(x1,x1,x2) because the optimality of y∗0 = y∗1 = x1,y∗2 = x2.
So ∂Ht(x1,x1,x2)/∂x1 +∂Ht(x1,x1,x2)/∂x2 ≥ 0, and

∂Vt(x0,x1,x2)
∂x1

+
∂Vt(x0,x1,x2)

∂x2
=

∂Ht(x1,x1,x2)
∂x1

+
∂Ht(x1,x1,x2)

∂x2
+ r1− p

≥ r1− p.

For part (c), we also just show one case, which is (c) of ii) in (2). If y∗0 = ξt,0(x1,x2),
then

∂ 2Vt(x0,x1,x2)
∂x2

0
+

∂ 2Vt(x0,x1,x2)
∂x0∂x1

= 0.
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If y∗0 = x0, then

∂ 2Vt(x0,x1,x2)
∂x2

0
+

∂ 2Vt(x0,x1,x2)
∂x0∂x1

= G′′(x)+
∂ 2Ut(x0,x1,x2)

∂x2
0

+
∂ 2Ut(x0,x1,x2)

∂x0∂x1
≥ 0

by the convexity of G and the inductive assumption.
Finally, based on part (b) and (c) of Lemma 5, we can show part (a) is true for period

n = t−1. Therefore, we complete the proof. ¤
We offer an explanation to this policy. If the total inventory x2 of the serviceable and

returned products is lower than ξn,2, then it is optimal to remanufacture all the available
returns and produce some units to bring the serviceable inventory level up to ξn,2. If the
total inventory level is higher than ξn,2, then it is not optimal to manufacture any units
and we only need to consider remanufacturing from returns. In this case there are two
possible scenarios:

First, θn,1(x2)≥ δn,1(x2). If x2 < ξn,1(x2), then remanufacture all returned products. If
x2 ≥ ξn,1(x2) but x1 < ξn,1(x2), then bring the serviceable inventory level up to ξn,1(x2) by
remanufacturing all type 1 and some type 2 returned products. If x1 ≥ ξn,1(x2), then only
remanufacture some type 1 returns to raise the serviceable inventory level to ξn,0(x1,x2)
if possible.

Second, θn,1(x2) < δn,1(x2). If the inventory of type 1 return x1 − x0 is more than
δn,1(x2)−θn,1(x2), then the optimal policy is: If x2 ≤ δn,1(x2), then bring the serviceable
inventory level to min{ξn,0(x2,x2),x2} by remanufacturing all type 2 and some type 1
returns; if x1 < δn,1(x2) ≤ x2, then first remanufacture some type 2 returns to bring the
aggregate inventory level of serviceable and type 1 return to δn,1(x2) and then further
repair some type 1 returns to increase the serviceable inventory level to θn,1(x2); if x1 ≥
δn,1(x2), then only remanufacture some type 1 returns to bring the serviceable inventory
level to max{ξn,0(x1,x2),x0}. If type 1 return x1− x0 is less than δn,1(x2)−θn,1(x2), then
the optimal policy is: If x2 ≤ δn,2(x1−x0,x2), then remanufacture all type 2 and some type
1 returns to bring the serviceable inventory level to ξn,0(x2,x2); if x1 < δn,2(x1−x0,x2)≤
x2, then only remanufacture some type 2 returns so as to raise the serviceable inventory
level to θn,2(x1− x0,x2), which also makes the aggregate inventory level of serviceable
product and type 1 return δn,2(x1− x0,x2); if x1 ≥ δn,2(x1− x0,x2), then do nothing.

This result is quite different from that of Theorem 2 and it is no longer always optimal
to wait to remanufacture type 2 returns until type 1 returns are depleted. Why does the
optimal policy become so complicated in this case? Technically, it is mainly due to the
loss of some structural properties of Hn(y) in y, specifically, Hn(y) may not be increasing
in y1,y2, . . . ,yK . Consequently, Vn(x) is not decomposable in contrast to the case r1−s1 ≤
r2 − s2 (see Proposition 1). Intuitively, we can also explain this with the help of the
following arguments. Note that (1−α)rk−sk is the “actual” unit cost of remanufacturing
one unit of type k return to serviceable product if the current period is not period N. In
contrast, rk − sk is the “actual” type k unit remanufacturing cost when the period is N
already. If (1−α)r1 − s1 ≤ (1−α)r2 − s2 and r1 − s1 ≤ r2 − s2, it implies that it is
always better to remanufacture type 1 return first until it is depleted regardless of what
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will happen in the next period. However, for the case (1−α)r1 − s1 ≤ (1−α)r2 − s2
but r1− s1 > r2− s2, in some periods close to the end of the planning horizon, it may be
better for the firm to remanufacture type 2 returns first while it is better to remanufacture
type 1 return first in the periods close to the beginning of the planning horizon. These
complicate the decision making for remanufacturing.

It can be expected that as the types of returned product increase, the optimal policy
will be even more complicated when condition (6) is not satisfied.

5 Concluding Remarks
Efficient management of inventory systems with returns can reduce costs and increase

profitability of firms. In this paper, we develop inventory models with multiple types of
returns and characterize the optimal inventory control and remanufacturing policies. We
find that simple and state-independent policy is optimal under some scenarios while not in
some others. For the latter case, we also analyze the structure of optimal control policy for
the case with two types of returns and prove that the optimal policy is quite complicated
and state-dependent. We remark that, even though we assume stationary distributions for
demand and returns over periods, all the results reported in Sections 3 and 4 can be easily
extended to the nonstationary case.
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