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Abstract We study the problem on optimal harvesting from a population in a stochastic crowded
environment with harvesting cost. In this problem, the size of the population satisfy the stochastic
logistic differential equation, which serves as a model for population growth in a stochastic en-
vironment with finite carrying capacity when harvesting is exercised. We consider the following
problem: What harvesting strategy maximizes the expected discounted total harvested profit? We
formulate this as a stochastic control problem and obtain the optimal harvesting strategy and the
corresponding optimal harvesting profit function explicitly.
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1 Introduction
Theory of stochastic control is widely applied in many fields such as finance,

insurance, bioeconomics, etc. Many kinds of models on control problems have been
put forward to meet the needs of practice. In this paper, we study the optimal harvest-
ing strategy when there is harvesting cost using stochastic analysis and the classical
theory of stochastic control.

Bioeconomic resource models incorporating random fluctuations in either popu-
lation size or model parameters have been the subject of much interest. The problem
of optimally harvesting is extremely important in mathematical bioeconomics and
has been widely studied. The canonical example is asking how to get the most out
of a logistic growth model. A classic model for population growth in a stochastic
crowded environment proposed by E. M. Lungu and B. Øksendal [1] is to represent
the size of the population at time t as the solution of the stochastic logistic differential
equation

dXt = rXt(K−Xt)dt +αXt(K−Xt)dWt, t ≥ 0;X0 = x > 0, (1)

where r ∈R , K > 0, α∈R , and x ≥0 are given constants. The constant r is a
measure of the quality of the environment (for this population). The constant K is
called the carrying capacity of the environment. The constant α is a measure of
the size of the noise in the system. Wt denotes one-dimensional standard Brownian
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motion and dWt is the Itô differential. See, for example, [2] for more information
about stochastic differential equations.

An alternative model, studied by Alvarez and Shepp [3] and later by Myhre [4]
generalizes the logistic model by adding a noise term where relative uncertainty is
constant:

dXt = rXt(1−Xt/K)dt +αXtdWt, t ≥ 0;X0 = x > 0, (2)

Alvarez [5] has also analyzed a class of models described by

dXt = r(Xt)Xtdt +α(Xt)dWt , t ≥ 0;X0 = x > 0, (3)

N. C. Framstad [6] studied a model described by

dXt = r(Xt)Xtdt +α(Xt)XtdWt + ∫zM(dt,dz), t ≥ 0;X0 = x > 0, (4)

where M is the centered random measure.
All the aforementioned works are concerned with the problem of maximizing

the expected discounted total harvest.
In this paper, we emphasize that we will instead be introducing an important

factor—harvesting cost to the model. We study the following question: Suppose
we have a population (e.g., a fish population in a lake) whose size Xt at time t is
described by the stochastic differential Equation (1). At what times–and how much–
should we harvest from the population to maximize the expected discounted total
harvested profit? We formulate this as a stochastic control problem and obtain op-
timal harvesting strategy and optimal profit function. We find the solution by using
variational inequalities.

2 Optimal harvesting model with harvesting cost
Assume to be given a filtered probability space (ΩΩΩ, F , (Ft)t≥0, PPP) satisfying

the usual conditions. Suppose that, when we do not make any interventions, the
population that we consider has size Xt at time t given by the stochastic logistic
equation

dXt = rXt(K−Xt)dt +αXt(K−Xt)dWt, t ≥ 0;X0 = x > 0. (5)

The coefficients of this equation, b(x) = rx(K －x) and σ (x) = αx(K －x) do not
satisfy the linear growth conditions |b(x)| ≤C(1+ |x|) for all x and |σ (x)| ≤C(1+ |x|)
for all x for some constant C, and therefore it is not straightforward from the general
theory (See, for example, Chapter 5 in [2]) that Equation (1) has a global solution;
that is, a solution defined for all t ≥0. Nevertheless, it can be proved (See Section 2
in [1]) that if eitherr ≥0, (and x≥0 is arbitrary) or 0≤ x≤ K, (and r ∈R is arbitrary),
then the stochastic logistic equation (1) has a unique, global strong solution Xt defined
for all t ≥0.

In the deterministic case, the solution is well known. See, for example, Section
2.5 in [7] and the references therein.
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The stochastic population [model; Eq. (5)] is one of several possible stochas-
tic versions of the classical Verhulst model for deterministic population growth in
a crowded environment. It can be arrived at this model by introducing white noise
in the corresponding deterministic logistic Equation and using the corresponding Itô
interpretation of the integral.

Suppose that the population is, say, a fish population in a lake and that we decide
to harvest (fish) from the population.

We denote by ht the cumulative harvested amount up to and including time t,
then the size of the harvested population Xh

t will satisfy the equation

dXh
t = rXh

t (K−Xh
t )dt +αXh

t (K−Xh
t )dWt−dht, t ≥ 0;Xh

0 = x > 0. (6)

If the discounting exponent is ρ , then the expected discounted total harvested profit
from time 0 on is given by

Jh(x) = Ex[
∫ T

0−
e −ρt(λdht− c(Xh

t )dt)], (7)

where Ex denotes the expectation with respect to the probability law Px of (Xh
t )t≥0

starting at x at time t = 0, while T = inf{t > 0: Xh
t = 0} is the time when the popu-

lation dies out (if it does), λ denotes the value of per unit harvested population, c(·)
is a nonnegative function representing the harvesting cost, which has two continuous
derivatives and depends on the size of the harvested population Xh

t , and satisfies

Ex[
∫ ∞

0
e −ρtc(Xh

t )dt)] < ∞ (8)

and
c”(x)≥−2rλ for x > 0. (9)

We call a process {ht , t ≥0} an admissible control strategy if it is a right con-
tinuous, absolutely continuous, nonnegative, nondecreasing, and Ft-adapted process
and satisfies (8). We denote by H all the admissible control strategies.

This leads to the following problem:
Find the function Φ(x) and an optimal harvesting strategy h*∈H such that

Φ(x) = sup
h∈H

Jh(x) = Jh∗(x). (10)

3 A verification theorem
We denote by X̂h

t the reflection downward of Xh
t when it reaches a certain (fixed)

level x* and by ξ t the local time of {Xh
t } at x*. Assume Xh

0 = x ≤ x∗ then X̂h
t and ξ t

can be obtained as the solution of the Skorohod stochastic differential equation [8]

dX̂h
t = rX̂h

t (K− X̂h
t )dt +αX̂h

t (K− X̂h
t )dWt−dξt (11)
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Then X̂h
t and ξ t have the following properties: X̂h

t ≤ x∗, for all t ≥0; ξ t is nondecreas-
ing, increasing only when X̂h

t = x*; X̂h
0 = x≤ x∗ and ξ 0 = 0.

Theorem 1 Suppose that we can find ψ∈C2(R), ψ≥0, such that

ψ ′(x)≥ λ for all x > 0 (12)

Lψ(x) := rψ ′(x)x(K− x)+
1
2

α2ψ ′′(x)x2(K− x)2−ρψ(x)≤ c(x) for all x > 0

(13)
then

ψ(x)≥Φ(x) f or all x > 0 (14)

In addition, assume that there exist a constant C and a positive constant x* such that

Lψ(x) = c(x) for x < x∗ (15)

ψ(x) = λ (x− x∗)+C for x≥ x∗ (16)

Define the following control

ĥt =
{

(x− x∗)+ f or t = 0
ξt f or t > 0 (17)

where ξ t is the local time of X̂t given by Equation (11). Suppose that

Ex[ψ(Xĥ
T̂R

)]→ 0 as R→ ∞, (18)

where TR = T ∧R ∧inf{t ≥0: X ĥ
t ≥ R}, then

ψ(x) = Φ(x) = Jh∗(x) f or all x > 0 (19)

and h* :=ĥ is optimal.
The proof of Theorem 1 is given in Appendix.

4 Optimal harvesting strategy
In this section, we will give the optimal harvesting strategy and the correspond-

ing optimal harvesting profit explicitly.
It is clear that to accomplish this task, it suffices to determinate the function

ψ(x) that satisfies (12)-(18).
It requires us to find a function f (x) and two constants x*, C that satisfy

L f (x) = c(x) f or x < x∗

f ′(x)≥ λ for x < x∗; f ′(x∗) = λ

f ”(x∗) = 0

rλx(K− x)−ρ[λ (x− x∗)+C]≤ c(x) for x≥ x∗ (20)
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Ex[ f (X ĥ
T̂R

)]→ 0 as R→ ∞ (21)

After it is done, we let

ψ(x) =
{

f (x) f or x < x∗
λ (x− x∗)+C f or x≥ x∗ , (22)

then from Theorem 1 we can conclude that ψ = Φ and we have an explicit description
of the optimal harvesting strategy h*, which is given in (17).

Assume from now on that ρ < rK and let θ = 1
2 [1－ 2r

α2K＋
√

( 2r
α2K −1)2 + 8ρ

α2K2 ],
then 0< θ < 1.

Then from Section 4 in [1] and using the method describeed in Chapter 2 in [9]
we can find a function f0(x) as a particular solution of the equation

L f (x) = c(x) (23)

and we know
f (x) := f0(x)+Axθ g(x) (24)

is strictly increasing in (0, K) and always a solution of Equation (23), where A >

0 is an arbitrary constant and g(x) =
∞
∑

k=0
akxk, a0 = 1, and the function h(x) := f ′(x)

must have a minimum in (0, K). Therefore there exists at least one point x ∈(0, K)
such that

h′ (x) = f ”(x) = 0.
Define x* = inf{x >0: f ”(x) = 0}, then f ”(x*) = 0, and

f ”(x∗) < 0, f or all x ∈ (0,x∗) (25)

and by virtue of we can choose the constant A > 0 in Equation (24) such that f ′

(x*) = λ .
Then by inequality (25), we have
f ′ (x) > λ for x ∈(0, x*).
Finally let C = f (x*), from (25), we get
c(x) = L f (x) = rf’ (x)x(K －x)+ 1

2 α2 f ”(x)x2(K －x)2 －ρf (x)
< rf’ (x)x(K －x)－ρf (x) for x < x*
Hence, if we put
F(x) = rψ’ (x)x(K －x)－ρψ(x)－c(x) for x > 0,
we have
F(x) > 0 for x < x* and F(x*) = 0.
Therefore

F ′(x∗)≤ 0. (26)

that is,
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rf ”(x*)x*(K －2x*)＋rf’ (x*)(K －2x*)－ρf’ (x*)－c′ (x*)≤0.
Because f ”(x*) = 0 and f ′ (x*)= λ , this gives

x∗ ≥ K
2
− ρ

2r
− c′(x∗)

2rλ
(27)

Note that
F ′ (x) = rλ (K －2x)－ρλ －c′ (x) for x≥ x*,
F”(x) =－2rλ －c”(x) for x≥ x*,
then combining (9) and (26) we get F ′ (x)≤ F ′ (x*)≤0 for x≥ x*.
Then we conclude that
F(x)≤ F(x*) = 0 for x≥ x*.
and Equation (20) is verified.
Finally, let Ω0 = {ω: T (ω) = ∞}, similar to [1], we can verify condition (21) for

both ω∈Ω0 and ω /∈Ω0 .
Thus the function ψ(x) defined by (22) satisfies all the requirements of Theorem

1 and we conclude that ψ coincides with the value function Φ.
Obviously the harvesting strategy ĥ defined by (17) is an optimal harvesting

strategy.

5 Conclusions
The problem on optimal harvesting from a population in a stochastic crowded

environment with harvesting cost considered in this paper can be regarded as a math-
ematical formulation of the problem of finding the best profitable and sustainable
harvesting strategy under uncertainty, which is to maximize the expected discounted
total harvested profit. We formulate this as a stochastic control problem and obtain
the optimal harvesting strategy and the corresponding optimal harvesting profit func-
tion explicitly. We have proved that the optimal strategy is as follows. Wait until the
population reaches the size x* before starting the harvesting (or harvest the popula-
tion down to x* immediately if it initially is above x*); and, from then on, harvest
only when Xt ≥ x*, and then exactly the (minimum) amount needed to prevent the
process from exceeding the level x*. See Figure 1.

It can be seen through simple computation that the population level at which
harvesting is done should be higher when there is uncertainty than when there is no
uncertainty.

Appendix
Proof of Theorem 1. Choose an arbitrary harvesting strategy h ∈H and assume

that ψ∈C2(R), ψ≥0, and satisfies Equations (12) and (13). Then by Ito’s formula for
semimartingales–see, for example, Chapter II in [10]–we have, by Equation (6),

e−ρT Rψ(Xh
TR) = ψ(x)+

∫ TR
0 e−ρtLψ(Xh

t )dt +
∫ TR

0 αe−ρtψ ′(Xh
t )X

h
t (K−Xh

t )dWt

− ∫ TR
0 e−ρtψ ′(Xh

t )dht + Σ
0<t≤TR

e−ρt [∆ψ(Xh
t )+ψ ′(Xh

t−)∆ht ],

(A.1)
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Figure 1: The optimal harvesting rule and the corresponding population process (re-
flection at x = x∗).

where ∆ψ(Xh
t ) = ψ(Xh

t )－ψ(Xh
t−) .

With the use of Equation (13), this gives

Ex[e−ρT Rψ(Xh
T R)] = ψ(x)+Ex[

∫ TR
0 e−ρtLψ(Xh

t )dt]−Ex[
∫ TR

0 e−ρtψ ′(Xh
t )dht ]

+Ex[ Σ
0<t≤TR

e−ρt [∆ψ(Xh
t )+ψ ′(Xh

t−)∆ht ]

≤ ψ(x)+Ex[
∫ TR

0 e−ρtc(Xh
t )dt]−Ex[

∫ TR
0 e−ρtψ ′(Xh

t )dht ]
+Ex[ Σ

0≤t≤TR

e−ρt [∆ψ(Xh
t )+ψ ′(Xh

t−)∆ht ]−Ex[ψ ′(x)∆h0]

(A.2)
Let hc

t denote the continuous part of ht ; that is, hc
t = ht － Σ

0<u≤t
∆hu .

Then Equation (A.2) can be written as

Ex[e−ρT Rψ(Xh
T R)] ≤ ψ(x)+Ex[

∫ TR
0 e−ρtc(Xh

t )dt]−Ex[
∫ TR

0 e−ρtψ ′(Xh
t )dhc

t ]
+Ex[ Σ

0≤t≤TR

e−ρt∆ψ(Xh
t )]

(A.3)
On the other hand, by the mean value property, we have

∆ψ(Xh
t ) = ψ ′(ηt)∆Xh

t =−ψ ′(ηt)∆ht (A.4)
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for some η t ∈ (Xh
t−, Xh

t ) .
Hence, combining Equations (A.3) and (A.4) with condition (12), we get
Ex[e−ρT Rψ(Xh

T R)]≤ψ(x)－Ex[
∫ TR

0− e−ρt(λdht －c(Xh
t )dt)]

Hence

ψ(x) ≥ lim
R→∞

Ex[e−ρT Rψ(Xh
T R)]+Ex[

∫ T
0− e−ρt(λdht − c(Xh

t )dt)]

≥ Ex[
∫ T

0− e−ρt(λdht − c(Xh
t )dt)]

(A.5)

Because this holds for arbitrary h ∈H, we conclude that ψ(x)≥Φ(x), which is Equa-
tion (14).

Now Let’s prove the rest of Theorem 1.
First we suppose that x < x*, then we have ĥt = ξ t , t ≥0, applying calculations

(A.1)-(A.5) to h = ĥ, we get equality everywhere. Therefore,

Ex[e−ρT̂R ψ(X ĥ
T̂R

)] = ψ(x)＋Ex[
∫ T̂R

0 e−ρtc(X ĥ
t )dt]－Ex[

∫ T̂R
0−λe −ρtdĥt]

Then we have
ψ(x) = lim

R→∞
Ex[e−ρT̂R ψ(X ĥ

T̂R
)] + Ex[

∫ T
0− e−ρt(λdĥt －c(X ĥ

t )dt)]

= Ex[
∫ T

0− e−ρt(λdĥt －c(X ĥ
t )dt)] = Jĥ(x)

by condition (17).
Next we suppose that x≥ x*, then we have
Jĥ(x) = λ (x－x*) + Ex∗[

∫ T
0 e−ρt(λdĥt －c(X ĥ

t )dt)]
= λ (x－x*) + ψ(x*) = ψ(x)
Then we know ψ(x) = Jĥ(x) for all x > 0
Combining this with Equation (14), we get Equation (19) and hence h* :=ĥ is

optimal.
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