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Abstract In this paper, we propose a method for the extra resource allocation problem based on
data envelopment analysis (DEA). Suppose there are some extra resource such as bonus or material
benefits, which can be given to all or only a part of decision making units (DMUs), and if we
want the allocation to be most beneficial to the whole system, how the extra resource should be
distributed. Since the selection of DMUs to receive the extra resource should depend on not only
its efficiency, but also its scale, this extra resource allocation problem is complicated to be solved.
We construct an improved Common Weights Analysis (CWA) model to obtain common weights
for the full ranking. Adopting the common weights, we propose an algorithm for the extra resource
allocation problem. The extra resource allocation we proposed is regarded as the most compromise
solution.

Keywords Date envelopment analysis (DEA); common weights analysis (CWA); extra resource
allocation problem (ERAP); decision making unit (DMU), compromising solution; efficiency score;
scale.

1 Introduction
Data envelopment analysis method, firstly proposed by Charnes, Cooper and

Rhodes in 1978 [1], has become an increasingly important tool not only for assessing
the relative efficiency of homogeneous operating decision-making units (DMUs), but
also for performance forecasting and resource estimation. Instead of the original ef-
ficiency evaluation function of DEA, the resource allocation problem based on DEA
method has become a hot topic in DEA field. We propose an interesting resource
allocation problem which is termed as extra resource allocation problem (ERAP) in
this paper. Let us consider a decision-making environment in which a set of DMUs is
operating. Each unit produces multiple outputs by costing multiple inputs. Suppose
the central decision maker wants to allocate some extra resource such as bonus or
material benefits to some or all units, if the decision maker wants the allocation to
be most beneficial to the whole system, how much should every unit get. The extra
resource allocation try to allocate extra resource to reach the stimulation target.
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2 Literature Review
2.1 DEA Framework

Charnes, Cooper and Rhodes [1] introduced the CCR ratio definition which gen-
eralized the single-output to single-input classical engineering-science ratio defini-
tion to multiple outputs and inputs without requiring preassigned weights. This is
done via the extremal principle incorporated in the following model:

(CCRFP) max ho =
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6 1, j = 1,2, . . . ,n (1)

u = (u1,u2, . . . ,us)T > 0
v = (v1,v2, . . . ,vm)T > 0

where the yr j,xi j > 0 represent output and input data for DMU j, an optimal h∗o = max
ho will always satisfy 0≤ h∗o ≤ 1 with optimal solution values u∗r ,v

∗
i > 0.

The above fractional program (1) can be replaced by a linear program. The dual
model is always used in realistic applications, which is expressed with a real variable
θ and a nonnegative vector λ = (λ1, . . . ,λn)T of variables as follows [2]:

(CCRDLP) min θ
s.t. Xλ 6 θxo (2)

Y λ > yo

λ > 0

2.2 Common Weights Analysis (CWA)
From CCR ratio model, different inputs and outputs weights are allowed for

evaluating different DMUs. But efficiency assessments in real applications often
demand a general view of the relative importance of inputs and outputs by using
same inputs and outputs weights. By using DEA method, we can get a category of
efficient DMUs (eDMUs), but DEA can not provide enough information to rank the
eDMUs. So if one further wants to understand which DMU the best is, he/she needs
another indicator to discriminate among the eDMUs, the common weights is just
such indicator.

Using DEA method to solve the common weights, the idea is first proposed by
cook et al.(1990) [3], Andersen and Petersen (1993) [4] developed procedures for
ranking only the efficient units in the DEA, Liu and Peng (2006) [5] proposed com-
mon weights analysis (CWA) model to rank DMUs in the category of efficient. CWA
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determines an implicit datum under the assumption that the maximum efficiency is
equal to 1 among the eDMUs. The CWA model is as follows:

min ∑
i∈E

(|∆i
I|+ |∆i

O|)

s.t.

s
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u jyi j +∆i
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m
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= 1, i ∈ E (3)

ui > 0, i = 1,2, . . . ,s
vi > 0, i = 1,2, . . . ,m
∆i

O,∆i
I f ree

The optimal solution weights = (v1,v2, · · · ,vm,u1,u2, · · · ,us) is regarded as the
most compromised common weights for all the eDMUs.

3 Description and Analysis of Extra Resource Allocation
The extra resource allocation problem is: suppose there are some extra resource

which can be given to all or only a part of DMUs, and if we want the allocation to be
most beneficial to the whole system, how the extra resource should be distributed.

This extra resource allocation problem can be generally found in practice. For
example, a factory wants to distribute some premium to several outstanding staffs at
the end of the year; The chief bank wants to distribute a great deal of bonus to all
branch banks; The government wants to serve out food aid to different disaster areas.
How should the premium, bonus or food aid be distributed to realize the fair principle
and meanwhile make the whole beneficial.

It is complicated to solve this kind of problem, because the selection of DMUs to
receive the extra resource should depend on not only its efficiency, but also its scale.
Li and Cui (2007) in [6] analyzed this problem and offered the resource allocation
algorithm according to three base models: single input and single output, single input
and multi-output, multi-input and single output model. The following theorem was
proposed in paper [6].
Theorem 1: for the single output and single input case, it is fair and logical to allocate
the extra resource that the allocation weights is equivalent to the proportion of the real
output of each DMU. That means: suppose there are n DMUs with single output and
single input to be allocated resource, the output value of the n DMUs is (Y1, · · · ,Yn).
Then we can determine the allocation weights W as

(
Y1

∑n
i=1 Yi

, · · · , Yn

∑n
i=1 Yi

)
.

Proof: suppose n DMUs with single input and single output are considered. The
input vector is X = (X1, · · · ,Xn), and the output vector is Y = (Y1, · · · ,Yn). The effi-
ciency scores of the DMUs calculated from CCR ratio model (2) are θ = (θ1, · · · ,θn).
We will first prove that there is a constant h > 0 exists that satisfies: for all i ∈
1,2, . . . ,n, hθiXi = Yi.
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For DMU j, ∀ j = 1,2, . . . ,n, the constraints of its related CCR model (1) are:

u jYi

v jXi
≤ 1, i = 1,2, . . . ,n, v j > 0,u j > 0

Then we have that u j

v j
≤min{X1

Y1
, · · · , Xn

Yn
}. Let Xl

Yl
= min{X1

Y1
, · · · , Xn

Yn
}, then u j

v j
≤ Xl

Yl

goes. As the Xl and Yl are known constants, so we know that max u j

v j
= Xl

Yl
, ∀ j =

1, . . . ,n. The object function of CCR model (1) is max u jYj

v jX j
, as max u j

v j
= Xl

Yl
and the X j

and Yj are known constants, so max u jYj

v jX j
= XlYj

Yl X j
= θ j, then we get that Yj = Yl

Xl
θ jX j, let

h = Yl
Xl

, so we get that for all i ∈ 1,2, . . . ,n, hθiXi = Yi.
For DMU j, since Yj = hθiXi and u jYj = v jθ jX j, it is obvious that doing allocation

according to Yj or u jYj both make sense because they both take into consideration the
efficiency and the scale of DMU j. But since u j is a variable, given a random positive
number k > 0, it also goes that ku jYj = kv jθ jX j. ku jYj also can reflects the efficiency
and the scale of DMU j as same as u jYj and Yj. So we get the conclusion that ku jYj and
u jYj do not reflect the DMU j’s scale in a logical way. Otherwise, the Yj is a constant
and reflects the DMU j’s real scale. So the allocation according to real output of the
DMUs is a fair and logical method with concerning both the efficiency and the scale
factors. ¤

We accomplish the proof of Theorem 1 on the assumption that the extra resource
allocation is fair and logical when it concerns both the efficiency and scale of all the
DMUs.

4 Counter Example
Section 3 gives a description of the single input and single output DMU case,

let us extent it to the multi-output and multi-input DMU case which is more general
in practice. Suppose there are n DMUs, for each DMU, say DMU j, the given values
on the indices are denoted as (x1 j,x2 j, . . . ,xm j) and (y1 j,y2 j, . . . ,ys j), respectively. We
can measure the efficiency of DMU j by θ j which is calculated by model (2), and we
can get a set of weights vector wi = (v1 j, · · · ,vm j;u1 j, · · · ,us j), under which DMU j

can reach its optimal efficiency score. So the following formulation goes:

u1 jy1 j +u2 jy2 j + · · ·+us jys j = θ j(v1 jx1 j + v2 jx2 j + · · ·+ vm jxm j)

Let Y j denotes the virtual output of DMU j, where Y j = u1 jy1 j +u2 jy2 j + · · ·+us jys j,
and X j denotes the virtual input of DMU j, where X j = v1 jx1 j + v2 jx2 j + · · ·+ vm jxm j.
In the same way, other DMU’s virtual output and virtual input can be calculated. So
we transform the multiple outputs and multiple inputs problem into the single input
and single output case. It is natural to get the allocation weights by Theorem 1 as
following formulation:

W =
(

Y 1

∑n
i=1 Y i

, · · · , Y n

∑n
i=1 Y i

)
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.
Let w j denotes the allocation weights of DMU j. Given random positive number

k > 1, it is allowed that we multiply u1 j,u2 j, · · · ,us j and v1 j, · · · ,vm j with constant k
to get û1 j, · · · , ûs j and v̂1 j, · · · , v̂m j. So, the new optimal weights of DMU j is ŵ j = kw j

and also satisfies û1 jy1 j + · · ·+ ûs jys j = θ j(v̂1 jx1 j + · · ·+ v̂m jxm j), which mean that the
new set of weights ŵ j is also optimal for DMU j. Then we can get Ŷj = kY j, and
assume that the other DMUs’ virtual output is not changed. As the virtual output of
DMU j is greater than before, the allocation weights Ŷj

∑n
i=1 Ŷi

of DMU j will be greater

than Y j

∑n
i=1 Y i

.

Because we can randomly set the number k, so the above allocation weights
lacks of a uniform solution. To solve this problem, we need find a uniform multiplier
to measure all the DMUs’ scale on one coordination.

To solve this problem, let us consider the case in which per unit values of the
various outputs are known. These values could be income, profit or a weight assigned
to each particular output. Let ur be the value or weight for per unit of output r,
and assume ur > 0,r = 1, . . . ,s. We can compute DMU j’s virtual output as Yj =
u1y1 j + · · ·+ usys j, and let the Wj = Yj

∑n
i=1 Yi

denotes the allocation weight of DMU j.
With this common weights as a uniform multiplier, we can get an approach to solve
the extra resource allocation problem.

5 θ -CWA — An Improved Model of CWA
As we focus on the allocation process, assume that we have known the DMUs

set which will get a part of the extra resource. Without loss of generality, we assume
that all the DMUs are going to be allocated some extra resource. From the analysis
above, we need first calculate a set of common weights for the whole system to solve
this allocation problem.

Model (3) has provided a method to calculate the common weights, but it has a
limitation that it is only used for efficient DMUs (eDMUs). In the conclusion part in
paper [5], a future research issue is addressed that how to extent the full ranking to
all the DEA-iDMUs. As all the DMUs should be considered, it is necessary to get a
full ranking for all the DMUs. Kao and Hung [7] proposed a compromise solution
approach in 2005. By combining the idea of compromise solution with CWA, we
propose the following θ -CWA model.
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(θ −CWA) min
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The above θ -CWA model can be transformed into the linear programming as
follows:

(θ −CWALP) min
n

∑
i=1

(∆i2
I +∆i2

O)

s.t.
s

∑
j=1

u jyi j +∆i
O−θi

m

∑
j=1

v jxi j−θi∆i
I = 0, i = 1,2, . . . ,n

ui > 0, i = 1,2, . . . ,s (5)
vi > 0, i = 1,2, . . . ,m
∆i

O,∆i
I f ree

By solving the above linear programming formulation, we get a compromise
common weights cw = (v1,v2, · · · ,vm,u1,u2, · · · ,us) for full ranking. Based on this
set of common weights, all DMUs are compared on one scale. This set of weights are
different with other evaluation weights. Firstly, because this set of common weights
dependent on the efficiency score of all the DMUs. As we all known, the efficiency
score computed by CCR model reaches the optimal relative efficiency of the DMU,
so the common weights make all the DMUs arrive their optimal efficiency in a com-
promise way; Secondly, this set of weights are changing with the recently standings’
change of all the DMUs, it is not invariable. That means the advantage aspect in
last evaluation process may not still increase the DMU’s score in new evaluation this
time.

6 Extra Resource Allocation Algorithm
Combined the above θ -CWA model with the analyzed method in chapter 3, we

present the algorithm for extra resource allocation problem as follows.
Algorithm 1 (Extra resource allocation algorithm):

Given n DMUs and the inputs X and outputs Y , and the cw = (v1,v2, · · · ,vm,
u1,u2, · · · ,us) computed by θ -CWA model.
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Step 1: for j from 1 to n, compute Yj = ∑s
i=1 uiyi j;

Step 2: compute Y∑ = ∑n
i=1 Yi;

Step 3: for j from 1 to n, compute Wj = Yj

Y∑
;

Output W = (W1,W2, · · · ,Wn).
The extra resource allocation calculated by algorithm 1 is a fair allocation be-

cause it not only considers the efficiency score but also considers the scale aspect.
Corollary 2: The extra resource allocation solution calculated by Algorithm 1 is the
most compromise solution.
Proof: Algorithm 1 gives us an approach to solve the extra resource allocation prob-
lem. The solution is unique one that reflects the relative efficiency scores of the
DMUs and the scales. Since the common weights computed from θ -CWA model (5)
allowing a relaxation with the efficiency scores which are regarded as the exact effi-
ciency scores of all the DMUs, and model (5) tries to smallest the errors caused by the
relaxation, the solution is called the most compromise common weights [7]. From
the analysis in section 4, the exact solution to the extra resource allocation problem
is hard to get. As Algorithm 1 utilizes the most compromise common weights, the
solution to the extra resource allocation problem is regarded as the most compromise
solution. ¤

7 Conclusion
Although extra resource allocation problem based on DEA method is a new

problem proposed, it can be often seen in practice. Adopting common weights anal-
ysis method, we propose a scheme and its related algorithm to obtain a most com-
promise solution to the extra resource allocation problem. Since in multiple inputs
and multiple outputs DMU case, the exact solution may not exist, so the solution
we proposed in this paper is a feasible, and from the most compromise sense, the
best answer can be found to the problem. The principle that the allocation should
concerns with both the efficiency and the scale of all the DMUs, is a broad-accepted
principle in real management applications. This study extends the research range of
the resource allocation problem and the full ranking with common weights based on
DEA method.
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