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Abstract Observing behaviors of protein pathways and genetic networks under various environ-
ments in living cells is essential for unraveling disease and developing drugs. For that purpose,
the biological experimental technique using transfected cell microarrays (cell arrays) has been de-
veloped. In order to apply cell arrays to identification of the subnetworks that are significantly
activated or inactivated by external signals or environmental changes, it is useful to allocate sev-
eral or several tens of reporter genes. In this paper, we consider the problem of selecting the most
effective set of reporter genes.

We propose two graph theoretic formulations of the reporter gene allocation problem, and
show that both problems are hard to approximate. We propose integer programming-based methods
for solving practical instances of these problems optimally. We apply them to apoptosis pathway
maps, and discuss biological significance of the result. We also apply them to artificial scale-free
networks. The result shows that optimal solutions can be obtained within several seconds even for
networks with 10,000 nodes.
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1 Introduction
Identification of novel target genes for the treatment of diseases is an impor-

tant topic in drug design and systems biology. Because of its importance, various
approaches have been proposed. Among these, transfected cell microarrays (cell
arrays for short) are regarded as a potentially powerful approach [1, 2, 3, 4]. Cell
arrays are complementary technique to DNA microarrays. The most important dif-
ference is that each spot in a DNA microarray corresponds to a gene, whereas each
spot in a cell array corresponds to a cluster of several tens or hundreds of living cells.
This property enables us to observe times series data of gene expression in living
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cells. Furthermore, upon the addition of cells and a lipid transfection reagent, slides
printed with cDNA become living microarrays, in which some specific gene is over-
expressed. On the other hands, it is also possible to knock out some specific gene
by using siRNA [1, 3]. Therefore, we may be able to observe effects of gene over-
expression or gene knockdown by using cell arrays. We may also be able to observe
effects of external signals on gene expressions in living cells. In order to observe the
effects using cell arrays, we may need reporter genes, which are designed to measure
the expression level of gene or the corresponding product through the magnitude of
fluorescence. Over the past decade, a battery of powerful tools that encompass for-
ward and reverse genetic approaches have been developed to dissect the molecular
and cellular processes that regulate disease. In particular, the advent of genetically-
encoded fluorescent proteins, together with advances in imaging technology, make
it possible to study these biological processes in many dimensions [5]. Importantly,
these technologies allow direct visual access to complex events as they happen in
their native environment, which provides greater insights into human diseases than
ever before [6, 7]. However, the cost (both in labor and money) of introduction of
reporter genes to a cell is very high. Thus, we cannot use a lot of reporter genes. In-
stead, we should allocate several or several tens of reporter genes which are the most
efficient for identifying the pathways that are significantly activated or inactivated by
means of external signals or environmental changes.

There exist related studies. Several studies have been done for developing hy-
pothesis generation techniques that use model checking and formal verification in
order to qualitatively reason about signaling networks [8, 9, 10]. These techniques
may be useful for computational analysis of effects of external signals and/or envi-
ronmental changes. However, these techniques require statements about the property
of individual reactions in networks, details of which are often unavailable. Ruths et
al. recently proposed a framework for computational hypothesis testing in which sig-
naling networks are represented as bipartite directed graphs [11]. In their framework,
each network contains two types of nodes: nodes corresponding to molecules and
nodes corresponding to reactions. They considered two problems: the constrained
downstream problem and the minimum knockdown problem. The latter one is closely
related to our problem and is to find a minimal set of nodes removal of which discon-
nects two given sets of compounds. They defined the minimum knockdown problem
as a graph theoretic problem. They proved that the problem is NP-hard and proposed
an iterative and randomized heuristic algorithm.

In this paper, we consider graph theoretic formulations of the reporter gene allo-
cation problem. Since there is no consensus mathematical model of genetic networks
or signaling pathways, we do not assume any specific models such as Boolean net-
works and Bayesian networks. Instead, we treat each network as a directed graph,
where each edge can have a weight. Then, we formulate the reporter gene allocation
problem as problems of selecting a set of nodes that covers as many nodes as possible,
or selecting a minimal set of nodes that covers all the nodes in a network, where we
say that node v is covered by node u if there exists a directed path from u to v within a
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specified length. We prove that these problems are NP-hard. Furthermore, we prove
that these problems are hard to approximate. We also show that some connection be-
tween these problems and the set cover problem (along with its variant). In order to
solve realistic instances, we formulate these problems as integer programs (IPs) and
apply a famous IP solver (CPLEX) to solving instances of these IPs. This approach
is reasonable because a close relationship between integer programming and the set
cover is known [12]. It should be noted that our approach is significantly different
from that in [11]: (i) problems and network representations are different from each
other, (ii) optimality of the solution is not guaranteed in [11], whereas optimality is
guaranteed in our approach.

We perform computational experiments using both artificially generated net-
works and a real biological network. Though our IP formulations are simple, the
results are quite surprising: the proposed method can find optimal solutions within
several seconds even for networks with 10,000 nodes. Furthermore, the set of allo-
cated reporters for a real network is reasonable from a biological viewpoint. These
suggest that the proposed approach is practically useful for finding an optimal set of
reporter genes.

2 Allocation Problems
In this section, we define two optimal allocation problems, P1 and P2. Bio-

logical networks such as gene regulatory networks and signaling pathways can be
considered as a directed graph G = (V,E) with a set of nodes V = {v1, ...,vn} and
a set of directed edges from vi to v j, (vi,v j) ∈ E. In gene regulatory networks, a
node means a gene, and in signaling pathways, a node means a protein. It should be
noted that a reporter gene can be used both for measuring gene expression and for
measuring abundance of proteins.

We define that a node v is a neighboring upstream node of a node vr if there is
a directed path within the length of a constant L from v to vr in G. In this case, we
also say that v is covered by vr. For a set of nodes R, we say hat v is covered by R if
v is covered by some node in R. This definition can be justified as follows: if some
node v covered by vr is affected by external signals and/or environmental changes, it
is highly expected (for small L) that vr is also be affected. That is, we may infer that
a subnetwork around vr is affected by external signal or environmental change if vr

is affected, and we want to cover as many parts of the network as possible.
We assume in this paper that L does not depend on the reporter node and each

edge has unit length. This assumption is reasonable because it is difficult to determine
L for each gene or protein and the length of each edge. However, the proposed
methods can be modified for a general case in which L depends on the reporter node
and each edge has distinct length (or weight). Figure 1 shows an example of covered
nodes by using a reporter when L = 2.

Problem P1 maximizes the number of covered nodes by using K reporters, and
is defined as follows.
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Figure 1: Example of nodes covered by a reporter node when L = 2 in a directed
graph G = (V,E) with V = {v1, ...,v7}. In this case, v2, v3, v4 and v6 are covered by
v6.
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Figure 2: Left: Transformation of an instance I = 〈U = {u1, ...,um},S = {s1, ...,sl},k〉
of the maximum coverage problem to Problem P1. Right: Transformation of I =
〈U,S〉 of the set cover problem to Problem P2.

Difinition 1[Problem P1] Given a directed graph G = (V,E) and two integers L
and K (≤ |V |), find a set R ⊆ V of cardinality at most K maximizing the number of
nodes covered by R.

It should be noted that R corresponds to a set of reporters. For sufficiently large
K, we can cover all nodes of V using the solution of Problem P1. In some cases,
we may want to cover all the nodes by using a minimum number of reporter nodes.
Thus, we also consider the following problem.

Difinition 2[Problem P2] Given a directed graph G = (V,E) and an integer L,
find a minimum cardinality set R⊆V such that all nodes of V are covered by R.

3 Theoretical Results
We show that Problem P1 is MAX SNP-hard, which means that no PTAS exists

unless P=NP. It should be noted that MAX SNP-hardness also implies NP-hardness.
For terminology on approximation algorithms, refer to [12].

Theorem 1. Problem P1 is MAX SNP-hard.

Proof. We show an L-reduction from the maximum coverage problem [12, 13],
which is known to be MAX SNP-hard [14], to Problem P1. The maximum coverage
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problem is defined as follows: Given a family of sets S over U , and an integer k,
find C⊆ S of cardinality at most k which maximizes the number of covered elements
in U . From an instance I = 〈U = {u1, ...,um},S = {s1, ...,sl},k(≤ l) 〉 of the maxi-
mum coverage problem, we construct an instance I′ = 〈G = (V,E),L,K〉 of P1 in the
following way (See Figure 2):

V = {u1, ...,um,s1, ...,sl},

E =
l⋃

j=1

⋃

ui∈s j

{(ui,s j)},

L = 1, K = k.

It should be noted that |V | = m + l, |E| = ∑l
j=1 |s j|. Thus, I′ can be constructed in

polynomial time.
Let OPT (I) and OPT (I′) be optimal solutions of I and I′, respectively. Then,

OPT (I′)= OPT (I)+k holds. Without loss of generality, we can assume that OPT (I)≥
k. Therefore, OPT (I′)≤ 2OPT (I).

Given any solution R ⊆ V of I′ with cost (i.e., the number of covered nodes)
c′, we produce a solution C of I in polynomial time by letting C = R−U , where
R−U = {r|r ∈ R and r /∈U}. Then, |C| ≤ |R| ≤ k. Let c be the cost (i.e., the number
of covered elements) of C. Since c′ ≤ c+ k holds,

OPT (I′)− c′ = OPT (I)+ k− c′ ≥ OPT (I)− c.

Therefore, the above reduction is an L-reduction and thus Problem P1 is MAX SNP-
hard. 2

For Problem P2, we can show a much stronger hardness result as follows.

Theorem 2. There is no polynomial time algorithm for Problem P2 with approxima-
tion ratio less than 1−δ

4 logn for any constant 0 < δ < 1 unless
NP⊆ DT IME(npolylog(n)).

Proof. We prove the theorem by contradiction. Suppose that there is a polyno-
mial time algorithm for Problem P2 with approximation ratio less than 1−δ

4 logn for
any constant 0 < δ < 1.

The set cover problem is defined as follows: Given a family of sets S over U , find
a minimum cardinality set C ⊆ S such that all elements of U are covered by

⋃
si∈C si.

From an instance I = 〈U = {u1, ...,um},S = {s1, ...,sl}〉 of the set cover problem, we
construct an instance I′ = 〈G = (V,E),L〉 of P2 in the following way (See Figure 2):

V = {u1, ...,um,s1, ...,sl,s0},

E =
l⋃

j=1

(
{(s j,s0)}∪

⋃

ui∈s j

{(ui,s j)}
)

,

L = 1,
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where s0 is a node not in S.
Let OPT (I) and OPT (I′) be optimal solutions of I and I′, respectively. Then,

OPT (I′) = OPT (I)+1 holds.
Given any solution R⊆V of I′ with cost c′ (i.e., the number of selected nodes),

we produce a solution C of I in polynomial time by letting C = (R−U −{s0})∪
{s j| for ui ∈ R− S−{s0},ui ∈ ∃s j}. Let c be the cost (i.e., the number of selected
elements) of C. Since c = |C| ≤ |R|= c′ holds,

c
OPT (I)

=
c

OPT (I′)−1
≤ c′

OPT (I′)−1
.

For any constant 0 < δ < 1,

c′

OPT (I′)−1
≤ 1

1−δ
c′

OPT (I′)
<

1
4

logn

holds for sufficient large n = m+ l +1. Therefore,

c
OPT (I)

<
1
4

logn.

This contradicts to the fact that there is no polynomial time algorithm for the set cover
problem with approximation ratio less than 1

4 logn unless NP ⊆ DT IME(npolylog(n)).
Thus, the theorem is proved. 2

We can also show positive results on approximation ratios using a well-known
greedy algorithm for the set cover [12]. For that purpose, we let U = V and S =
{sv|sv is the set of nodes covered by v ∈V}, and simply apply the greedy algorithm.
Then, the following propositions are directly obtained from the results on the greedy
algorithm [12, 13, 14].

Proposition 3. P1 can be approximated within a factor of e/(e−1).

Proposition 4. P2 can be approximated within a factor of O(logn).

4 Integer Programming Formulation
In this section, we propose methods to solve Problem P1 and P2 using integer

programming. In the previous section, we showed that both Problem P1 and P2 are
very hard to find optimal or approximate solutions. However, efficient algorithms
such as branch-and-bound methods have been developed for integer programming,
which is also NP-hard. Therefore, we formulate Problem P1 and P2 as integer pro-
grams, and call IP1 and IP2 respectively. In the next section, we show that IP1 and
IP2 are solved in practical time through computational experiments.

Problem P1 is formulated as follows.

(IP1) Maximize
n

∑
i=1

yi,
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Subject to
yi ≤ ∑

j∈SL
i

x j for i = 1, ..,n,

n

∑
i=1

xi ≤ K,

xi = {0,1},
yi = {0,1},

where SL
i is the set of nodes covered by vi. Thus, for j ∈ SL

i , the length of a directed
path from the node vi to v j is less than or equal to L. xi = 1 if vi is selected as a
reporter, otherwise xi = 0. yi = 1 if vi is covered by some reporter, otherwise yi = 0.
IP1 maximizes the number of covered nodes using at most K reporter nodes.

Similarly, Problem P2 is formulated as follows.

(IP2) Minimize
n

∑
i=1

xi,

Subject to
∑
j∈SL

i

x j ≥ 1 for i = 1, ..,n,

xi = {0,1}.

IP2 minimizes the number of reporters such that all nodes are covered. If the
parameter K of IP1 is greater than or equal to the optimal solution of IP2, the optimal
solution of IP1 is always n.

5 Computational Experiments
We applied the proposed methods to two kinds of data, apoptosis pathway maps

as a real network and artificial scale-free networks for validating the practicality of
our methods in large networks.

All of these computational experiments were done on a PC with a Xeon 5160
3GHz CPU and 8GB RAM running under the Linux (version 2.6.19) operating sys-
tem. We used ILOG CPLEX (version 10.1)[15] for solving IP1 and IP2, and mea-
sured execution time of the optimization function CPXmipopt() for mixed integer
programming problems in CPLEX. We must calculate SL

i for all i in order to give in-
teger programming problems to the function. However, the preparation takes at most
O(n2) time.

5.1 Apoptosis Pathway Maps
We used apoptosis pathway maps in a HeLa cell (See Figure 3). The maps

are composed of major signal pathways of apoptosis, which are initiated by TRAIL
(tumour necrosis factor apoptosis inducing ligand) ligation [16]. The maps were
constructed by a commercial software, MetaCore (GeneGo Corp.) [17], in which
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Figure 3: Apoptosis pathway maps in a HeLa cell, which contain 132 proteins and
337 binomial relations.

findings presented in peer-reviewed scientific publications were systematically en-
coded into an ontology by content and modelling experts, and a molecular network
of direct physical, transcriptional and enzymatic interactions was computed from this
knowledge base. The maps thus constructed contain 132 proteins and 337 binomial
relations.

Table 1 shows the results on the optimal solution of IP1 and IP2 for each L(=
1, ...,6,132) and K(= 1, ...,6). The solution of IP2 for each L gives the required
number of nodes to cover all nodes of V . For example, 42 reporters are required for
L = 1, and 9 reporters for L = 6.

In the case that L is equal to the number of nodes n = 132, a node vi is always
covered by another v j if there is a directed path from vi to v j. Since 121 proteins
among 132 proteins are covered by protein BAK1 in the case of both L = 6 and
L = 132, we can see that the distance between almost all pairs of proteins in this
network is at most 12. Thus, it is considered that the network also has a small-world
property [18]. It should be noted that most nodes (126 nodes) are covered by 6 re-
porters in the case of L = 6. It is also observed that 104 nodes are covered by 6
reporters even in the case of L = 2. For L = 1, ...,3, TP53, BCL2 and BAX were
selected as the most significant reporters respectively. These proteins are considered
as hubs of the network because they have large indegrees and outdegrees. On the
other hand, BAK1 is not considered as a hub, but is as an accumulation node of the
network, and is selected as a reporter. Moreover, it seems that some of the selected
proteins have significant biological meanings as follows. p53, a tumour suppres-
sor gene that responds to DNA-damage, is influential on TRAIL-induced apoptosis
by up-regulating TRAIL receptor [19]. Bcl-2 superfamily regulates cell death that is
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Table 1: The optimal solution of IP1 and IP2 for each L and K in apoptosis pathway
maps, where the numbers of covered nodes and the numbers of the selected reporters
are shown for IP1 and IP2, respectively.

L IP1 for each K IP2 Reporter in K = 1
1 2 3 4 5 6 (indegree/outdegree)

1 20 36 47 56 62 68 42 TP53 (19/5)
2 60 76 85 92 98 104 22 BCL2 (17/4)
3 88 103 110 116 118 120 15 BAX (16/6)
4 109 116 120 122 124 126 12 BAX (16/6)
5 118 121 123 125 127 128 10 BAK1 (6/1)
6 121 123 125 127 128 129 9 BAK1 (6/1)

132 121 123 125 127 128 129 9 BAK1 (6/1)

amplified via the mitochondrial pathway [20]. BAX may be related with possible am-
plification of apoptosis via the intrinsic pathway in response to JNK. The caspase-9
may be essential for border-cell migration in the Drosophila ovary [21], and the reg-
ulation of cell migration may also point to a roll in the cleavage of several adhesion-
and cell motility- related proteins during mammalian apoptosis [22].

Table 2 shows the selected proteins as reporters for each L and K. The protein
selected as a reporter for smaller K was not always selected for larger K. For example,
for L = 2, BCL2 was selected as a reporter in the case of K = 1, but was not in the
cases of K = 2, ...,4. If we use a simple greedy algorithm for solving P1, we may not
be able to find CASP9 and BAX for K = 2, or CASP9, BAX and IKBKG for K = 3
since the greedy algorithm often tends to add a new node to the solution for K− 1.
On the other hand, our integer programming-based methods can always find optimal
solutions if any. For each case, the elapsed time of optimizing IP1 or IP2 was at most
0.023 seconds. These results suggest that our methods are practical.

5.1.1 Effects of Specific Nodes
It is also important to observe the effects of signals on specific proteins or genes

using cell arrays. In this section, we used CASP8, which is a protease located at
the upstream of the caspase cascade that is a main pathway of the apoptosis initiated
by TRAIL [23], as a specific protein among the apoptosis pathway maps. Then, we
extracted the downstream proteins within the distance 2 from CASP8 (See Figure
4). We excluded CASP8 from this downstream subnetwork not to select it as a re-
porter. Thus, we obtained the subnetwork with 23 proteins and 58 binomial relations
excluding CASP8.

Table 3 shows selected proteins as reporters for each L and K as Table 2. In
both the whole network and the subnetwork, the same proteins such as BCL2, BAK1
and CASP9 were selected as reporters. It is reasonable because they have similar
connections in both networks. For L = 4, ...,n(= 23), five proteins without outward
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Table 2: Selected proteins as reporters for each L and K in apoptosis pathway maps.

L K IP1 Reporters
1 1 20 TP53
1 2 36 TP53, BCL2
1 3 47 TP53, BCL2, BAX
1 4 56 TP53, BCL2, BAX, CASP9
1 5 62 TP53, BCL2, BAX, CASP9, FADD
1 6 68 TP53, BCL2, BAX, CASP9, FADD, MAP3K1
1 7 73 TP53, BCL2, BAX, CASP9, FADD, MAP3K1, BIRC4
2 1 60 BCL2
2 2 76 CASP9, BAX
2 3 85 CASP9, BAX, IKBKG
2 4 92 CASP9, BAX, IKBKG, MAP2K7
2 5 98 CASP9, IKBKG, MAP2K7, BCL2, VDAC2
2 6 104 CASP9, IKBKG, MAP2K7, BCL2, VDAC2, TP53
3 1 88 BAX
3 2 103 BAX, IKBKG
3 3 110 IKBKG, BCL2, VDAC2
3 4 116 IKBKG, BCL2, BAK1, MAP2K7
3 5 118 IKBKG, BAK1, MAP2K7, CASP9, TP53
4 1 109 BAX
4 2 116 BCL2, BAK1
4 3 120 BAX, VDAC2, IKBKG
4 4 122 BAX, VDAC2, IKBKG, FASLG
5 1 118 BAK1
5 2 121 BAK1, BCL2
5 3 123 BCL2, VDAC2, TNFRSF1A
5 4 125 BCL2, VDAC2, TNFRSF1A, DFFB
6 1 121 BAK1
6 2 123 BAK1, FASLG
6 3 125 BAK1, FASLG, TNFRSF1A

132 1 121 BAK1
132 2 123 BAK1, TNFRSF1A
132 3 125 BAK1, TNFRSF1A, FASLG
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Figure 4: Downstream proteins of CASP8 within the distance 2 in apoptosis pathway
maps. CASP8 is highlighted with the double circles. We excluded CASP8 from this
subnetwork not to select it as a reporter.

edges were selected as the optimal reporter nodes in IP2.

5.2 Artificial Scale-free Networks
It is known that many real biological networks have the scale-free property [24].

In particular, it is observed that gene regulatory networks have the power-law out-
degree distribution and the Poisson indegree distribution [25]. Thus, we generated
scale-free networks with a power-law outdegree distribution (∝ k−2.5) and Poisson
indegree distribution as follows. We first choose the outdegree for each node from a
power-law distribution. That is, the outdegree di of node vi is drawn from a power-
law distribution. Then, we choose di output nodes randomly with uniform probability
from n nodes. Thus, the indegree distribution should follow a Poisson distribution.

Table 4 shows the average CPU time over 100 networks for each case. For large
n(= 1000,5000,10000), the elapsed time was sufficiently short (even in the case of
L = 3 and K = 5). This result suggests that the proposed methods are scalable to
realistic size instances. The elapsed time of IP2 was shorter than that of IP1 for
almost all cases. It is reasonable because IP1 has twice as many integer variables as
IP2, and the number of constraints in IP1 is larger than that in IP2.

6 Concluding Remarks
We defined two problems P1 and P2 to allocate reporter genes that are effective

for observing behaviors of various biological networks. We showed hardness results

298 The First International Symposium on Optimization and Systems Biology



Table 3: Selected proteins as reporters for each L and K in the downstream proteins
of CASP8.

L K IP1 Reporters
1 1 6 BCL2
1 2 10 BID, CASP7
1 3 13 BCL2, BID, BIRC4
1 10 (IP2) 23 CASP9, RAD9B, BCL2, BAK1, DIABLO,

CASP3, DFFA, NUMA1, PAK2, PARP1
2 1 13 BCL2
2 2 18 BCL2, BIRC4
2 3 19 BCL2, DIABLO, NUMA1
2 7 (IP2) 23 BCL2, BAK1, DIABLO, DFFA, NUMA1,

PAK2, PARP1
3 1 16 BAD
3 6 (IP2) 23 CASP9, BAK1, DFFA, NUMA1, PAK2, PARP1
4 5 (IP2) 23 BAK1, DFFA, NUMA1, PAK2, PARP1
23 1 19 BAK1
23 5 (IP2) 23 BAK1, DFFA, NUMA1, PAK2, PARP1

on approximation of these problems. On the other hand, by means of reduction to the
set cover problem, we showed that P1 and P2 can be approximated within a factor of
e/(e−1) and O(logn), respectively.

We proposed integer programming-based methods IP1 and IP2 for solving prac-
tical instances of P1 and P2, respectively. We applied them to apoptosis pathway
maps, and found that such proteins as TP53, BCL2 and BAX selected by our meth-
ods often correspond to hubs in the network. These proteins are also considered to
play important biological roles. Furthermore, we applied our methods to artificial
scale-free networks with up to 10,000 nodes, and we showed that our methods can
compute optimal solutions for these networks in practical time.

Table 4: Elapsed time (sec.) of solving IP1 and IP2 for each n, L and K.

n L K IP1 IP2
1000 1 1 0.0147972 0.00932519
1000 3 5 0.904964 0.0526494
5000 1 1 0.102972 0.0485728
5000 3 5 2.90922 0.841976

10000 1 1 0.276991 0.101553
10000 3 5 5.62986 4.01971

Integer Programming-based Approach to Allocation of Reporter Genes 299



Though we considered directed and unweighted networks in this paper, IP1 and
IP2 can be modified for undirected and/or weighted networks. Furthermore, we can
add various kinds of constraints to IP1 and IP2 because these are based on integer
programming. Such a flexibility would be useful for modifying the proposed methods
according to requirements from experimental biologists.
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