The First International Symposium on Optimization and Systems Biology (OSB’07)
Beijing, China, August 8-10, 2007
Copyright © 2007 ORSC & APORC, pp. 232-241

Reducing Error of Tumor Classification by
Using Dimension Reduction with Feature
Selection

Hua-Long Bu!?* Guo-Zheng Li!?*7
Xue-Qiang Zeng!**

!'State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing 210093, China

2School of Computer Engineering and Science, Shanghai University
Shanghai 200072, China

Abstract Dimension reduction is an important issue for analysis of gene expression microarray
data, of which principle component analysis (PCA) is one of the frequently used methods, and in
the previous works, the top several principle components are selected for modeling according to
the descending order of eigenvalues. While in this paper, we argue that not all the first features
are useful, but features should be selected form all the components by feature selection methods.
We demonstrate a framework for selecting good feature subsets from all the principle components,
leading to reduced classifier error rates on the gene expression microarray data. As a case study,
we have considered PCA for dimension reduction, genetic algorithms and the floating backward
search method for feature selection, and support vector machines for classification. Experimental
results illustrate that our proposed framework is effective to reduce classification error rates.
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1 Introduction

DNA microarray experiments are used to collect information from tissue and
cell samples regarding gene expression differences for tumor diagnosis [1-3]. The
output of microarray experiment is summarized as an N*P data matrix, where N is
the number of tissue or cell samples, P is the number of genes. Here P is always much
larger than N, which will hurts the generalization performance of most classification
methods. To overcome this problem, we can either select a small subset of interesting
genes (gene selection) or construct K new components summarizing the original data
as well as possible, with K< <P (dimension reduction, feature extraction).

Gene selection has been studied extensively in the last few years. The most
commonly used procedures of gene selection are based on a score which is calcu-
lated for all genes individually and genes with the best scores are selected [4, 5].
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Gene selection procedures output a list of relevant genes which can be experimen-
tally analyzed by biologists. These methods are often denoted as univariate gene
selection, whose advantages are its simplicity and interpretalility. However, much in-
formation contained in the dataset is lost when genes are selected solely according to
their individual capacity to separate the samples, since interactions and correlations
between genes are omitted, as are of great interest in system biology recently.

Dimension reduction is an alternative to gene selection to overcome the problem
of curse of dimensionality [6].Unlike gene selection, dimension reduction projects
the whole data into a low dimensional space and constructs the new dimensions
(components) by analyzing the statistical relationship hidden in the dataset. Build-
ing a tumor classification system under this framework involves two main steps (1)
extracting a number of features, and (2) training a classifier using the extracted fea-
tures. Principle components analysis (PCA) is one of the frequently used methods
for dimension reduction of microarray data [7-8].

Choosing an appropriate set of features is critical when designing gene classi-
fication systems under the framework of supervised learning. Often, a large number
of features are extracted to represent the original data. Without employing feature
selection strategy, however, many of them could be either redundant or even irrele-
vant. Ideally, we would like to use the features which have high separability power
while ignore or pay less attention to the rest. An appropriate feature set can simplify
both the pattern representation and the classifiers consequently; the resulting classi-
fier will be more efficient. In most practical cases, relevant features are not known
a priori. Finding out what features to use in a classification task is referred to as
feature selection. In the previous works, features of eigenvectors are chosen accord-
ing to their corresponding eigenvalues, eigenvectors corresponding to the top several
largest eigenvalues are selected for modeling, but eigenvectors of the tail component
also contain information and may be more important for classifiers [9, 10].

In this paper, we propose using genetic algorithms to search the space of eigen-
vectors with the goal of selecting a subset of eigenvectors encoding important in-
formation. This is in contrast to the typical strategy of picking a percentage of the
top eigenvectors to represent the original data. This approach has the advantage of
simple, general, and powerful. A similar work can be found in Ref. [11], which use
PCA and GA for object recognition

The rest of the paper is organized as follows: Section 2 introduces our proposed
framework and the detailed techniques. In Section 3, numerical experiments on three
real gene expression microarray data sets are performed and results are discussed. In
Section 4, conclusions are given.

2 Computational Methods

As discussed above, there are three main steps in building a tumor classification
system using supervised learning. Fig.1 illustrates the main steps of the approach
employed here. The main difference from the traditional approach is the inclusion of
a step that performs feature selection among the principle components extracted by
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feature extraction. From Fig. 1, we can see that dimension reduction consists of two
parts, feature extraction and feature selection, here feature extraction is performed by
principle components analysis, and feature selection is performed by genetic algo-
rithm and the backward floating search method. They are explained in the following
subsection.

Microarray » Pre P Dimension P Classifier
Data Processing Reduction
v
Feature Feature
Extraction P Selection

Figure 1: A framework of dimension reduction for tumor classification.

2.1 Feature Extraction Using PCA

PCA is a well known method of dimension reduction [12]. The basic idea of
PCA is to reduce the dimensionality of a data set, while retaining the variation present
in the original predictor features as much as possible. We summarize the main idea
below:

N
Firstly the average sample y is computed: y = % Y I';, where N is the number
i=1

of samples in the training set, I'; represent the ith samplé.
Next, the difference ¢ of each sample from the average sample is computed:

N
¢; =1'; —W¥. Then the covariance matrix is estimated by C = ,\l, Y 0,07 = AAT, where
i=1

A=1[¢1,9,...,9y]. The eigenspace can then be defined by computing the eigenvectors
uiof C.

Usually, we only need to keep a smaller number of eigenvectors R,corresponding
to the largest eigenvalues.

2.2 Feature Selection Using Genetic Algorithm

Genetic algorithm (GA) is a class of optimization procedures inspired by the
biological mechanisms of reproduction. [13-14]. GA operate iteratively on a popu-
lation of structures, each one of which represents a candidate solution to the problem
at hand, properly encoded as a string of symbols (e.g., binary). Three basic genetic
operators guide this search: selection, crossover, and mutation. The genetic search
processes it iterative: evaluating, selecting, and recombining strings in the population
during each iteration (generation) until reaching some termination condition. The ba-
sic algorithm, where P (t) is the population of strings at generation t, is given below:
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t=0
Initialize P (t)
Evaluate P (t)
While (termination condition is not satisfied) do
Begin
Select P (t+1) from P (t)
Recombine P (t+1)
Evaluate P (t+1)
t=t+1

End
In summary, selection probabilistically filters out solutions that perform poorly,

choosing high performance solutions to concentrate on or exploit. Crossover and
mutation, through string operations, generate new solutions for exploration. Given
an initial population of elements, GA use the feedback from the evaluation process
to select fitter solutions, generating new solutions through recombination of parts of
selected solutions, eventually converging to a population of high performance solu-
tions.

2.3 Support Vector Machines

Support vector machines (SVMs) are primarily two-class classifiers that have
been shown to be an attractive and more systematic approach to learn linear or
non-linear decision boundaries [15]. Their key characteristic is their mathematical
tractability and geometric interpretation.

Given a set of points, which belong to either of two classes:

(xlay1>7<x27y2>7"'a (xlayl)yxi € RN7yi S {_17+1}

SVMs aim at finding the hyperplane leaving the largest possible fraction of points
of the same class on the same side, while maximizing the distance of either class
from the hyperplane. This is equivalent to performing structural risk minimization to
achieve good generalization. Assuming there are 1 examples from two classes. Find-
ing the optimal hyper-plane implies solving a constrained optimization problem using
quadratic programming. The optimization criterion is the width of the margin be-

!
tween the classes. The discriminate hyperplane is defined as: f(x) = ¥ yia;k(x,x;) +
i=1

b, where k(x,x;) is a kernel function and the sign of f(x) indicates the membership
of x. Constructing the optimal hyperplane is equivalent to find all the non-zeroa;.
Any data point x; corresponding to a non-zero ¢; is a support vector of the optimal
hyperplane.

Suitable kernels functions can be expressed as a dot product in some space and
satisfy the mercer’s condition. By using different kernels, SVMs implement a va-
riety of learning machines. The Gaussian radial basis kernel is given by k(x,x;) =

_ el

exp( T)
The Gaussian kernel is used in this study, since Gaussian kernel is used fre-
quently and proved to be powerful to solve different problems [16].
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3 Numerical Experiments
3.1 Data sets

Six real microarray data sets are used in our studies which are briefly described
as below.

I)Central Nervous System (CNS): Pomeroy et al. developed a classification
system based on DNA microarray gene expression data derived from patient samples
of Embryonal tumors of the central nervous system. The data set used in our study
contains 60 patient samples with 7129 genes, 21 are survivors and 39 are failures.

2).Colon: Alon et al. used Affy metrix oligonucleotide arrays to monitor ex-
pressions of over 6,500 human genes with samples of 40 tumor and 22 normal colon
tissues. Expression of the 2,000 genes with the highest minimal intensity across the
62 tissues is used in the analysis.

3) Leukemai: The acute leukemia data set was published by Golub et al. Train-
ing data set consists of 38 bone marrow samples (27 ALL and 11 AML), over 7129
probes from 6817 human genes. Also 34 samples testing data is provided with 20
ALL and 14 AML.

4) Breast Cancer (BC): The data set was published by Van’t Veer et al. The
training data contains 78 patient samples; correspondingly, there are 12 relapse and
7 non-relapse samples in the testing data set. The number of genes is 24481

5)Prostate: Singh et al used microarray expression analysis to determine whether
global biological differences underlie common pathological features of prostate can-
cer and to identify genes that might antipate the clinical behavior of Prostate tu-
mors.The data set contains 77 prostate tumor samples and 59 non-tumor prostate
samples with 12,600 genes.

6) Lung Cancer: The data set was published by Gordon et al. Classification
between malignant pleural mesothelioma (MPM) and adenocarcinoma (ADCA) of
the lung. There are 181 tissue samples (31 MPM and 150 ADCA). The training set
contains 32 of them, 16 MPM and 16 ADCA. The rest 149 samples are used for
testing. Each sample is described by 12533 genes

3.2 Experimental setting

To evaluate the performance of the proposed approach, we use the hold out
validation procedure. Each data set is merged as a whole set, then we split the whole
set into the training set and test set (2/3 for training data and the rest for test). The
training data set is split by keeping 2/3 samples for training, the rest for validation.
Classification error of SVMs is obtained on test data sets. We repeat the process 50
times.

The goal of using GA here is to use less features to achieve the same or better
performance. Therefore, the fitness evaluation contains two terms: (1) classification
error and (2) the number of features selected. Between classification error and feature
subset size, reducing classification error is our major concern. We use the fitness
function shown below:
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fitness=10* *error+0.5*number_of_selected_features, where error corresponds
to the classification error on the validation data set.

The parameters of SVM and GA are set in default as in the software of The
Spider and MATLAB [17-18].

3.3 Experimental results

In order to demonstrate the importance of feature selection of dimension reduc-
tion, we have performed four series experiments here:

1) SVM, This is a baseline method, SVM has achieved satisfactory results, and
here it is used without any feature reduction on the data sets.

2) PCA+SVM, PCA is a feature extraction method, it is used for dimension
reduction without feature selection and the classification of SVM is used. The size
of top eigenvectors of PCA is obtained by validating the classifier on the validation
data set, as is a traditional way.

3) PCA+GA+SVM, beyond the baseline method, we proposed to use GA to se-
lect an optimum subset of eigenvectors, since we consider not all the top eigenvectors
are useful for discrimination but the tail eigenvectors also contain useful information
for discrimination.

4) PCA+BFS+SVM, the backward floating search (BFS) method is used to
selection significant eigenvectors of PCA, because BFS is a well-known heuristic
search method, it combines sequential forward search and sequential backward search
to the “plus 1-take away r” feature selection method [19] and has been proved one of
the best heuristic search methods [20].

The average error rates and their corresponding standard deviation values are
shown in Table 1. We also show the number of features selected by each method in
Table 2. Fig.2. shows the comparison of distributions of eigenvectors selected by GA
and FBS on six data sets.

Table 1: Average classification error rates on six data sets

Data sets SVM PCA+SVM PCA+BFS+SVM| PCA+GA+SVM
CNS 43.67(7.07) | 42.46(4.45) 39.83(5.50) 40.69(6.16)
Colon 31.75(6.91) | 29.83(6.22) 24.40(4.63) 23.61(3.42)
Leukemia | 8.13(4.87) 6.83(5.34) 6.43(5.32) 4.17(2.10)

BC 36.75(7.05) | 35.56(5.27) 30.67(6.27) 21.19(4.39)
Prostate 11.61(4.23) 17.04(5.28) 9.24(5.33) 7.65(2.61)

Lung 8.50(2.55) 14.00(4.79) 5.21(4.52) 1.67(1.06)
Average 23.40(5.45) | 24.2(5.22) 19.26(5.26) 16.49(3.29)

From Table 1, we can find feature extraction using PCA get about the same
result with SVM on the average value of six data sets, while feature selection further
improves SVM by 4.41 percent in the case of BFS, and 6.94 percent in the case of
GA than PCA+SVM.
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Table 2: Average percentage of features used by the three methods on six data sets

Data sets PCA+SVM PCA+BFS+SVM| PCA+GA+SVM
CNS 65.54(4.73) 46.92(4.25) 40.31(5.66)
Colon 79.71(7.89) 28.21(5.71) 32.79(5.43)
Leukemai 76.00(8.22) 26.37(7.11) 29.81(4.82)
BC 92.72(2.12) 79.55(3.35) 45.95(7.29)
Prostate 87.93(3.48) 14.63(7.19) 47.47(7.39)
Lung 98.00(9.77) 76.42(4.23) 37.73(2.63)
Average 83.31(6.03) 45.35(5.30) 32.34(5.53)
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Figure 2: Comparison of distributions of eigenvectors selected by GA and FBS on six
data sets. (X-axis corresponds to the Eigenvectors, ordered by their eigenvalues and
has been divided into bins of size 5. The y-axis corresponds to the average number
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From Table 2, we can find feature selection of GA and BFS do great help in
reducing features, they only use about one third eigenvectors while the optimized
PCA uses more than two third top eigenvectors.

Fig.2 illustrates that the eigenvector subsets selected by GA were different from
those by BFS, they do not only contain top eigenvectors, and they also contain tail
eigenvectors. As we have discussed in Section 2.2, different eigenvectors seems to
encode different kind of information, Fig. 2 shows tail eigenvectors encode discrim-
inative information.

3.4 Discussions

The difficulties of building a classifier for gene expression microarray data are
dimension reduction. Here we use the PCA+GA+SVM framework to get a simpler,
gender and efficiency classifier. Observing the tables shown in Section 3.3, several
interesting comments can be made as below:

1) The feature subsets selected by the GA approach improve classification per-
formance, all for the different data sets. GA can make a better performance than
BFS: Since BFS makes local decision, while GA is a kind of random strategy, it’s not
surprised that GA improve the analysis performance.

2) The GA solutions are quite compact: The final feature subsets found by GA
are very compact; the significant reduction in the number of eigenvectors speeds up
classification substantially.

3) Features encoding irrelevant or redundant information have not been favored
by the GA: comparing the BFS and PCA solely, we can find GA both reduces the
average error rate and the number of features selected. This means many of the
irrelevant or redundant information have been discarded and it improves the classifier
performance.

4) BFS and GA uses only one third eigenvectors, and the optimized PCA uses
two thirds eigenvectors, but BFS and GA obtain better results than PCA, this shows
that not all the top eigenvectors are useful for classification, the tail eigenvector also
contain discriminative information.

4 Conclusion

We have investigated a systematic feature reduction framework by combing fea-
ture extraction with feature selection. To evaluate the proposed framework, we used
sixe typical data sets .In each case, we used PCA for feature extraction, GA and BFS
as feature selection, and SVM for classification. Our experimental results illustrate
that the proposed method improves the performance on the gene expression microar-
ray data in the accuracy. Further study of our experiment indicates that not all the top
eigenvectors of PCA are useful for classification, the tail eigenvector also contain dis-
criminative information. Therefore, it is necessary to combine feature selection with
feature extraction for dimension reduction for analyzing high dimensional problems.
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