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Introduction
The search for local similarities in sequences is a classical problem in biology,

and several methods have been developed for this goal. We herein investigate the
N-local decoding method due to Gilles Didier ([2]), in order to classify sequences
according to the local similarity segments of a fixed length N that they share. The
sites of our sequences are originally occupied by a nucleotide or an amino-acid, and,
after the N-local decoding has been applied, these sites are occupied by new symbols
(that we call GD-classes), which classify the sites according to the composition of
their environment in words of length N. This method has already been successfully
used to construct trees for the subtyping of HIV/SIV variants ([3]). After recalling
the definitions and the original method of the N-local decoding, we will present new
developments which aim, on the one hand to allow to exploit the information gen-
erated by the decoding, and on the other hand, to tackle the influence of the free
parameter N.

1 Methods
In this paper we consider sequences on a finite alphabet A. The general problem

of the N-local decoding is concerned with occurrences of identical subwords of fixed
length N in sequences.
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1.1 Definitions
1.1.1 Sequences et sites

Let |s| be the length of a sequence s, let si be its elements for 1≤ i≤ |s|, and let
s[i, j] denote the subsequence sisi+1 · · ·s j. A sequence s′ is contained in s at position i
if s′ = s[i,i+|s′|−1]. Let us consider a set S of sequences over the alphabet A.

A site denotes a position in a sequence, in order to distinguish it from the letter
it carries. Formally the j-th site of the sequence s is the couple σ = (s, j), for 1 ≤
j ≤ |s|. If 1≤ j +k≤ |s|, we will put σ +k = (s, j +k). Let Σ be the set of sites of S.

Let R⊂ Σ×Σ be a binary relation over Σ, and ∆ = {(σ ,σ) |σ ∈ Σ} the diagonal
of Σ. The transitive closure R of R∪∆ is the equivalence relation spanned by R.

1.1.2 Neighbourhoods
The N-neighbourhood of site σ = (s, j) is the set of sites (s,mN), . . . ,(s,MN)

where

• mN = sup(1, j−N +1)
• MN = inf(|s|, j +N−1).

It is equivalently the window of width 2N−1 centered at σ , and possibly truncated
at the ends of s. At any rate, the N-neighbourhood of a site is a subsequence of s
of length k satisfying N 6 k 6 2N− 1. A word W of length N (hereafter called an
N-word) is said to be in relative position ` with respect to the site σ = (s, i) if the
subsequence s[i−`,i−`+N−1] coincides with the word W .

1.2 Decodings
Generally speaking a decoding of a set S of sequences is a map f : Σ−→ E from

the set of sites of S into a finite set E of states. If there is no natural way to annotate
the states, a decoding is equivalent to a partition P of Σ.

In this section, we recall Gilles Didier’s procedure of N-local decoding ([2]).
Let us define the direct similarity relation of order N among sites 'N as σ 'N σ ′

if and only if there exists an N-word W at the same relative position in the N-
neighbourhoods of σ and σ ′. The transitive closure ∼N of 'N is an equivalence
relation among sites of S. Let [σ ]N denote the class modulo ∼N of a site σ , and PN

the partition of Σ induced by ∼N . This partition is the N-local decoding of S.

For 0 6 i 6 N−1 let us define
i≡N the i-th similarity relation of order N between

sites by σ
i≡N σ ′ if and only if σ and σ ′ are both located at the i-th position of the

same N-word W in their respective neighbourhoods. The relation σ
i≡N σ ′ is an

equivalence relation, for all i, and, obviously, σ
i≡N σ ′ holds if and only if σ − i

0≡N

σ ′− i does. Therefore, the following lemma is self-evident.
Lemma 1.
For all N > 0, we have

∼N=
N−1⋃

i=0

i≡N .
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Let S denote now the concatenation of sequences of S obtained by inserting
between them different symbols not belonging to the alphabet A, and let STree(S)
be the attached suffix tree, whose leaves are thus indexed by the sites of S (and the
external symbols). A node of depth N is a common ancestor of two leaves σ and σ ′

if they are the starting site of a common word of length N, i. e. if σ
0≡N σ ′.

It is this observation which allows us to rely on the suffix tree construction of
Ukkonen ([7]) for computing these equivalence classes, which yields a very fast pro-
cedure for the computation of the N-local decoding. For more details, we refer the
reader to [2].

We will simply list here a performance array, where we vary the size of the
input, the integer N and the size of the alphabet.

Value of N
Dataset Size of sequence dataset Alphabet size 2 17 42
C2H2 26740 20 (protein) 0.084s 0.063s 0.061s
RG 27663 20 (protein) 0.112s 0.100s 0.100s
TOP 92226 20 (protein) 0.400s 0.331s 0.320s
Intron 81099 4 (DNA) 0.304s 0.260s 0.250s
TE 786738 4 (DNA) 5.958s 3.199s 2.296s

Tab 1: Time performance of N-local decoding algorithm.

1.3 Local decoding into segments
The information carried by the classes of the N-local decoding can be redundant.

As a first step towards reducing this redundancy, we define local segments of the N-
local decoding, which form a coarser partition of the sites in Σ that carries the same
information.

Let R be the binary relation

R = {(σ ,σ +1) ∈ Σ×Σ |Card([σ ]N) > 1 and [σ +1]N = [σ ]N +1},
where [σ ]N + 1 means the set obtained by taking the follower of every element in
[σ ]N . The classes of the equivalence relation ≡N spanned by R are called the N-
segments of GD-classes of S. For any σ ∈ Σ, let Π(σ) be the unique N-segment of
GD-classes containing σ .

In other words, the N-segments of GD-classes are the common subwords of the
sequences in S rewritten in the new extended alphabet of GD-classes.

1.4 Clustering of sequences
The N-local decoding thus described allows to construct groups of sequences in

the following way.
Consider for a while a sequence s as the set of its positions σ = (s, j) for 1 6

j 6 |s|. Given an integer N, and an equivalence class γ ∈ PN , let

S(γ) = {s ∈ S |s∩ γ 6= /0}.
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The set S(γ) is the set of sequences that contain an element of the equivalence class
γ .

The groups of sequences clustered by ∼N is the image GN of the map S : PN −→
P(S),γ 7−→ S(γ).

Conversely, for a subset G∈ GN , let S−1(G) be the GD-class profile (of order N)
of the subset G. There is an obvious bijection between subsets clustered by ∼N , and
GD-class profiles of order N (which are all disjoint by construction).

1.5 From the suffix tree to the partitions tree
Let ΠΣ be the complete lattice of partitions of Σ endowed with the partial order-

ing 6, and ∆ = {(σ ,σ) |σ ∈ Σ} be the minimum of ΠΣ.

Lemma 2.
For all N > 0, the partitions PN satisfy PN+1 6 PN .

Proof. For all sites σ and σ ′, we have σ 'N+1 σ ′⇒ σ 'N σ ′. Therefore [σ ]N+1 ⊂
[σ ]N .

The partitions PN thus naturally give rise to a tree Partree(S) whose nodes of
depth N are the classes of the relation ∼N , and whose edges only connect a node
γ of depth N to a node α of depth N + 1 if α ⊂ γ . As N reaches a certain value,
the partition PN reduces to ∆. Since a singleton of PN does not carry any similarity
information, we will assume that we have pruned Partree(S) of all its singletons. In
the same way, a valency 2 node of depth N, which corresponds to a class [σ ]N that
does not ramify at level N + 1, that is such that [σ ]N+1 = [σ ]N , will be suppressed
from the tree, and the corresponding appearing edge, weighted by the number of
suppressed nodes plus one. The set of significant GD-classes is the set

Psig = {γ = [σ ]N ∈ PN |[σ ]N+1 6= [σ ]N ,N ∈ N}.

For a given site σ ∈ Σ, the significant levels are the

N(σ) = {k ∈ N |[σ ]k 6= [σ ]k+1},
and let Nmax(σ) = maxk∈N(σ) k. This last quantity is useful to construct local motifs
(see section 2.1.3).

2 Results
We have applied some of these methods on two protein datasets, TOP and RG.

The first is composed of all the 124 topoisomerases that have been sequenced up to
march 2007, and the latter consists of 23 bacterial and archaeal reverse gyrases.

These 124 topoisomerase sequences are between 553 and 1067 residues long,
and have 10 active sites (Forterre et al. [4]) as discovered by structural analysis.
The second dataset studied by Nadal et al. [5] is composed of those 23 sequences
among the previous ones that have an extension (the reverse gyrase) on the Nterminal
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side and who contain therefore 5 further catalytic sites. Both kinds of sequences are
essential to DNA replication, and are therefore considered to be at the same time
very ancient and conserved. However, they show sufficient variations in primary
sequence to make both phylogenetic classification and multiple alignment (e. g. with
ClustalW) of these sequences remain quite unreliable.

2.1 Clustering of sequences
All N put together, the total number of clusters of sequences amounts to 7870,

which may seem a lot, but has to be compared with the 2124 possible subsets of the
sequence dataset. An analysis of the indegree distribution of nodes of the Hasse dia-
gram of this set of subsets (i. e. the directed graph on the set of subsets whose edges
indicate minimal inclusion relations, (and layered by cardinality)) reveals some pre-
ferred associations between sequences, which roughly matches the known taxonomy,
but has some interesting outliers.

We will here give a few examples of results obtained from N-local decoding of
these sets of sequences.

2.1.1 Example 1: Correction of annotation
In the dataset TOP, Thermoplasma Acidophilum is annotated as a thermophile

bacterium. The clustering resulting from the N-decoding consistently clusters this
microbial sequence with Archaea. After curation of the databases, it turns out that
the annotation was incorrect, and that Th. Ac. is indeed a thermophile Archaeum.

2.1.2 Example 2: Horizontal transfer hypothesis
The topoisomerase IA of Arabidopsis thaliana (AthT1) shows a clear preference

towards bacterial sequences, and in particular with Rickettsia prowazekii (RprT1), an
α-proteobacterium, with which it clusters up to N = 20.

RprT1_M_B_Rp KEVIPNKHFTEPPPRYSEASLVKKLEELGIGRPSTYASILSVLQDRKYVALEKKRFIP
AthT1_M_E_At GEVELKQHHTQHPPRYSEGSLVKKLEELGIGRPSTYASIFRVLQHRKYVTIKNRVLYP

Tab 2: Longest segment characterising the group Arabidopsis thaliana, Rickettsia
prowazekii

This observation is consistent with an assumed mitochondrial origin of topoiso-
merase IA of Arabidopsis thaliana ([6]).

2.1.3 Motif detection
The most interesting feature of the N-local decoding is that, despite being an ex-

act word matching combinatorial method, it manages to capture (mainly by virtue of
the transitive closure mechanism) letter substitutions which are biologically mean-
ingful. In the following example, we see how a single GD-class at N = 7, which
is moreover the only invariant amino-acid for the whole pattern, reveals an active
site with all its variations among the sequences. The following picture has been
constructed by aligning the sites decoded by the same GD-class P4 for N = 7, and
extending the window around a site σ to the width given by Nmax(σ) (see 1.5), in
order to show all the relevant information carried around this site.
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GD-class P4 (N=7)
Sequence name position
SsoR2_T_A_Ss 99 ---------------LASNQSFTMSA P TGLGKTTTLMT---------------
ApeR1_T_A_Ap 109 ----------------ARGDSFSIIA P TGVGKTTFGA----------------
PkoRG_T_A_Pk 89 --------QRTWVKRLLKGRSFSIIA P TGMGKSTFGAFMAVWHAL--------
ApeR2_T_A_Ap 106 ------------------GDSFAIIA P TGVGKSTL------------------
NeqRG_T_A_Ne 90 ---------------AYKGYSFSIIA P TGMGKTTFALV---------------
TpeRG_T_A_Tp 110 ------------------NTSFVILA P TGVGKTVF------------------
TmaRG_T_B_Tm 90 ---------------IVQGKSFTMVA P TGVGKTTFGMM---------------
StoR1_T_A_St 93 ---------------LAKSESFSLSA P TGLGKTTTLLV---------------
AfuRG_T_A_Af 72 -------------------ESFAATA P TGVGKTS-------------------
PaeRG_T_A_Pa 98 ------------------GKSFAIVA P TGSGKTTF------------------
AaeR2_T_B_Aa 106 --------------RVFMNQSFAIVA P TGVGKTTFGLVM--------------
PabRG_T_A_Pa 81 TGFRFWSAQRTWVKRILRGKSFSIIA P TGMGKSTFGAFISIYFAIKGKRSYIV
PfuRG_T_A_Pf 88 -------AQRSWVKRIIKGKSFSIIA P TGMGKSTFGAFMSIYFALK-------
AaeR1_T_B_Aa 86 ---------------VFLGRSFAMLA P TGVGKTTFGLS---------------
StoR2_T_A_St 91 ----------SWIIRVLRKESFAIIA P PGLGKTTFGIITSLYF----------
SsoR1_T_A_Ss 92 -------PQRSWTIRFLRGESFAIIA P PGLGKTTFGLIMSLYNATR-------
MjaRG_T_A_Mj 95 --------------------SFSIVV P TGVGKS--------------------
TteRG_T_B_Tt 90 --------------RLLLSKSFTLVA P TGVGKTTFGLIS--------------
SacR2_T_A_Sa 95 -----------------RGESFSLSA P TGVGKTTTL-----------------
TthR1_T_B_Tt 81 ----------------VQGRSFAMLA P TGIGKTTFGL----------------
PhoRG_T_A_Ph 81 TGFKFWSAQRTWVKRIIRGKSFSIIA P TGMGKSTFGAFISIYFATKGKKSYIV
SacR1_T_A_Sa 91 -------PQKSWIYRLLSGESFAIIA P PGLGKTTFGLISSIYLYLR-------

All of the 15 motifs of the reverse gyrases and 10 of the full topoisomerase
set are found by our technique. The RG motifs can also be discovered by specially
dedicated HMM-based tool such as MEME [1]. The comparison cannot however be
extended to the TOP dataset, since it proves too large to be handled by MEME.

3 Conclusion
The N-local decoding, despite being a purely combinatorial procedure, exclu-

sively based on primary sequence data, proves to capture biologically significant sim-
ilarities between sequences, and provides a basis for an effective ab initio, unsuper-
vised classification method for biological sequences, which can reasonably challenge
established bioinformatic methodologies such as multiple alignment or HMM-based
tools. Those characteristics of this method which have often been pinpointed as ap-
parent drawbacks of the method, namely the choice of the parameter N, and the size
of the resulting enriched alphabet can be in fact viewed, as we hope to have convinced
the reader of this paper, as an element for a deeper application of these techniques,
and will be the subject of more detailed work in the near future.
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