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Abstract This brief paper further investigates robust impulsive synchronization of complex de-
layed dynamical networks. Based on impulsive control theory on delayed dynamical systems, some
simple yet less conservative criteria ensuring robust impulsive synchronization of coupled delayed
dynamical networks are derived analytically. Furthermore, the theoretical results are applied to
a typical scale-free (SF) network composing of the representative chaotic delayed Hopfield neural
network nodes, and numerical results are presented to demonstrate the effectiveness of the proposed
control techniques.
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1 Introduction
Recent years have witnessed increasing interest in the study of complex net-

works from various fields of science and engineering. Networks are present ubiq-
uitously in the real word, including biological systems, genetic chains, protein in-
teraction graphs, social relationships and artificial and engineering architectures, etc
[1, 2, 3] .In the past decade, special attention has been focused on the synchronization
dynamics in large-scale complex networks composing of coupled chaotic oscillators
with small-world and scale-free characters (see [4, 5, 6] and references cited therein).

In the past several years, impulsive control has been widely used to stabilize
and synchronize chaotic dynamical systems due to its potential advantages over gen-
eral continuous control schemes [7, 8, 14]. It has been proved, in the study of chaos
synchronization, that impulsive synchronization approach is effective and robust in
synchronization of chaotic dynamical systems. Moreover, the controllers used usu-
ally have a relatively simple structure. In an impulsive synchronization scheme, only
the synchronization impulses are sent to the receiving systems at the impulsive in-
stances, which can decrease the information redundancy in the transmitted signal
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and increase robustness against the disturbances. In this sense, impulsive synchro-
nization schemes are very useful in practical application, such as in digital secure
communication systems [7, 8]. Therefore, the investigation of impulsive synchro-
nization of complex dynamical networks is important for design and applications in
engineering and technology.

This paper is mainly concerned with the issues of robust impulsive synchroniza-
tion of coupled delayed dynamical networks. Based on impulsive control theory on
delayed dynamical systems, some simple yet less conservative criteria are derived
for robust impulsive synchronization of the coupled delayed dynamical networks.
Furthermore, the obtained results are applied to a typical complex dynamical net-
works composing of the chaotic delayed Hopfield neural network nodes with scale-
free characters, and the numerical simulations also demonstrate the effectiveness and
feasibility of the proposed control techniques.

2 Problem Formulations
First, we consider a dynamical network consisting of N linearly coupled identi-

cal delayed dynamical nodes, which is described by the following set of differential
equations [5]:

ẋi(t) = f (t,xi(t),xi(t− τ))+
N

∑
j=1

bi jΓx j(t), i = 1,2 · · · ,N. (1)

in which xi(t) = (xi1(t), · · · ,xin(t))> ∈ Rn are the state variables of the ith delayed
dynamical node, f : R×Rn×Rn → Rn is continuously vector-valued function. For
simplicity, we further assume that the inner connecting matrix Γ = diag(γ1, · · · ,γn),
and the coupling matrix B = (bi j)N×N is a symmetric irreducible matrix with zero-
sum and nonnegative off-diagonal elements. This implies that zero is an eigenvalue
of B with multiplicity 1 and all the other eigenvalues of B are strictly negative [4, 5].

Next we consider an isolated identical dynamical system in the model (1), which
is described by the following form of n-dimensional equations with time delays [9]:

ẋ(t) = f (t,x(t),x(t− τ)) = Ax(t)+g(t,x(t),x(t− τ)), (2)

in which x(t) = (x1(t), · · · ,xn(t))> ∈ Rn, A ∈ Rn×n, and the vector-valued function
g(t,x(t),x(t− τ)) = (g1(t,x(t),x(t− τ)), · · · ,gn(t,x(t),x(t− τ))> ∈ Rn. Throughout
this paper, we always assume that g(t,x(t),x(t−τ)) satisfy uniform Lipschitz condi-
tion with respect to the time t, i.e.,

(A1) For any x(t) = (x1(t), · · · ,xn(t))> ∈ Rn, y(t) = (y1(t), · · · ,yn(t))> ∈ Rn,
there exist constants ki j > 0 satisfying

|gi(t,x(t),x(t− τ))−gi(t,y(t),y(t− τ))|
≤

n

∑
j=1

ki j
(|x j(t)− y j(t)|+ |x j(t− τ)− y j(t− τ)|), i = 1,2, · · · ,n. (3)
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Remark 1. It is easy to check that the class of systems in the form of Eqs. (2)-
(3) includes almost all the well-known chaotic systems with delays or without delays
such as the Lorenz system, Rössler system, Chen system, Chua’s circuit as well as the
delayed Mackey-Glass system or delayed Ikeda equations, delayed Hopfied neural
networks and delayed cellular neural networks (CNNs), and so on (see [6, 9]).

Now we consider the issues of impulsive control for robust synchronization of
the delayed dynamical network (1). By adding an impulsive controller {tk, Iik(t, xi(t))}
to the ith-dynamical node of the network (1), we have the following impulsively con-
trolled delayed dynamical network:





ẋi(t) = Axi(t)+g(t,xi(t),xi(t− τ))+
N

∑
j=1

bi jΓx j(t), t 6= tk, t ≥ t0,

4xi = Iik(t, xi(t)), t = tk, k = 1,2, · · · ,
(4)

where i = 1,2 · · · ,N, the time sequence {tk}+∞
k=1 satisfy tk−1 < tk and limk→∞ tk = +∞,

4xi = xi(t+
k )− xi(t−k ) is the control law in which xi(t+

k ) = limt→t+k
xi(t) and xi(t−k ) =

limt→t−k
xi(t). Without loss of generality, we assume that limt→t+k

xi(t) = xi(tk), which
means the solution x(t) is continuous from the right. The initial conditions of Eq.
(2) are given by xi(t) = φi(t) ∈ PC([t0− τ, t0],Rn), where PC([t0− τ, t0],Rn) denotes
the set of all functions of bounded variation and right-continuous on any compact
subinterval of [t0− τ, t0]. We always assume that Eq. (4) has a unique solution with
respect to initial conditions. Clearly, if Iik(t, xi(t)) = 0, then the controlled model (4)
becomes the continuous delayed dynamical network (1).

In this paper, we define the synchronization state of the controlled delayed dy-

namical network (4) as s(t) =
1
N

N

∑
i=1

xi(t), where xi(t)(i = 1,2 · · · ,N) are the solutions

of the continuous delayed dynamical network (1) [13]. The main objective of this pa-
per is to design and implement an appropriate impulsive controller {tk, Iik(t, xi(t))}
such that the states of the controlled delayed dynamical network (4) will achieve
synchronization, i. e.,

lim
t→+∞

‖ xi(t)− s(t) ‖= 0, i = 1,2 · · · ,N, (5)

where s(t) is called as the synchronization state of the controlled delayed dynamical
network (4). It may be an equilibrium point, a periodic orbit, or a chaotic attractor.

3 Robust Impulsive Synchronization
Base on impulsive control theory on delayed dynamical systems, the following

sufficient condition for robust impulsive synchronization of the controlled delayed
dynamical network (4) is established.

Theorem 1. Consider the controlled delayed dynamical network (4). Let the impul-
sive controller as

ui(t,xi) =
+∞

∑
k=1

Iik(t, xi(t))δ (t− tk) =
+∞

∑
k=1

dk
(
xi(t−k )− s(t)

)
δ (t− tk), (6)
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where dk is a constant called as the control gain, δ (t) is the Dirac function, and the
eigenvalues of its coupling matrix B be ordered as

0 = λ1 > λ2 ≥ λ3 ≥ ·· · ,λN . (7)

Assume that, in addition to (A1), the following conditions are satisfied for all i =
1,2, · · · ,n and k ∈ Z+ = {1,2, · · · ,∞}

(A2) There exist n positive numbers δ1, · · · ,δn, and two numbers

p = min
1≤i≤n

{
2δi−λmax(A+A>)−

n

∑
s=1

(2k2ε
is + k2(1−ε)

si )
}
, (8)

q = max
1≤i≤n

{ n

∑
s=1

k2(1−ε)
si

}
, (9)

such that p > q and γiλ (γi)+ δi ≤ 0, where λmax(A + A>) is the most eigenvalue of
the matrix (A+A>), and

λ (γi) =





λ2, if γi > 0,
0, if γi = 0,
λN , if γi < 0.

(10)

(A3) Let µ > 0 satisfy µ− p+qeµτ ≤ 0, and

θk = max
{

1, (1+dk)2}, θ = sup
k∈Z+

{ lnθk

tk− tk−1

}
(11)

such that θ < µ. Then the controlled delayed dynamical network (4) is robustly ex-
ponentially synchronized.

Brief Proof.

Let vi(t) = xi(t)− s(t)(i = 1,2, · · · ,N), then the error dynamical system can be
rewritten as





v̇i(t) = Avi(t)+Ag̃(t,vi(t),vi(t− τ))+
N

∑
j=1

bi jΓv j(t)+ J, t 6= tk, t ≥ t0,

vi(tk) = (1+dk)vi(t−k ), t = tk, k = 1,2, · · · ,
(12)

where

g̃(t,vi(t),vi(t− τ)) = g(t,vi(t)+ s(t),vi(t− τ)+ s(t− τ))−g(t,s(t),s(t− τ))

and

J = g(t,s(t),s(t− τ))+
1
N

N

∑
k=1

(t,xk(t),xk(t− τ)). (13)
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Let us construct a Lyapunov function

V (t) =
1
2

N

∑
i=1

v>i (t)vi(t). (14)

Calculating the upper Dini derivative of V (t) with respect to time along the solution

of Eq. (12), from Condition (A1), and note that
N

∑
i=1

vi(t) = 0, we can get for t 6= tk,

D+V (t) ≤
N

∑
i=1

n

∑
r=1

{[
−δi +

1
2

λmax(A+A>)+
1
2

n

∑
s=1

(2k2ε
rs + k2(1−ε)

sr )
]
v2

ir(t)

+
1
2

n

∑
s=1

k2(1−ε)
sr v2

ir(t− τ)
}

+
N

∑
i=1

v>i (t)

×
[ N

∑
j=1

bi jΓv j(t)+diag(δ1, . . . ,δn)vi(t)
]

≤ −pV (t)+qV (t− τ)+
n

∑
j=1

v̄>j (t)(γ jB+δ jIN)v̄ j(t), (15)

where

v̄ j(t) = (v̄1 j(t), · · · , v̄N j(t))> ∈ L def=
{

z = (z1, · · · ,zN)> ∈ RN |
N

∑
i=1

zi = 0
}
,

from which it can be concluded that if γ jλ (γ j)+δ j ≤ 0, then

n

∑
j=1

v̄>j (t)(γ jB+δ jIN)v̄ j(t)≤ 0. (16)

This leads to

D+V (t)≤−pV (t)+q( sup
t−τ≤s≤t

V (s)). (17)

On the other hand, from the construction of V (t), we have

V (tk) = (1+dk)2
N

∑
j=1

v>j (t−k )v j(t−k )≤ (1+dk)2V (t−k ). (18)

It follows from the famous Halanay delay differential inequality [12] that if θ < µ
for all t > t0,

V (t)≤ e−(µ−θ)(t−t0)( sup
t0−τ≤s≤t0

V (s)). (19)

This completes the proof of Theorem 1.
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Remark 1.
It can be seen from (A2) and (A3) that robust impulsive synchronization of the

controlled delayed dynamical network (4) not only depends on the coupling matrix B,
the inner connecting matrix Γ, and the time delay τ, but also is heavily determined by
the impulsive control gain dk and the impulsive control interval tk− tk−1. Therefore,
the approaches developed here further extend the ideas and techniques presented in
recent literature, and they are also simple to implement in practice.

4 Application to Coupled Neural Networks
As an application of the above theoretical criteria, robust synchronization prob-

lem of a scale-free complex network composing of chaotic delayed Hopfield neural
network nodes via impulsive control is discussed in this section, where numerical
example is given to verify and also visualizes the theoretical results.

Example 1.
Consider a model of the controlled delayed dynamical network:



ẋi(t) = Axi(t)+g(t,xi(t),xi(t−1))+
100

∑
j=1

bi jΓx j(t), t 6= tk, t ≥ t0,

xi(t) = (1+dk)
(
(xi(t−k )− s(t)

)
, t = tk, k = 1,2, · · · ,

(20)

in which xi(t) = (xi1(t),xi2(t))>, g(t,xi(t),xi(t−τ)) = Bg̃(xi(t))+Cg̃(xi(t−1)) with
g̃(xi(t)) = (tanh(xi1(t)), tanh(xi2(t)))> and

A =

[
−1.0 0

0 −1.0

]
, B =

[
2.0 −0.1

−5.0 3.0

]
, C =

[
−1.5 −0.1

−0.2 −2.5

]
, (21)

where the synchronization state of the controlled delayed dynamical network (16) is

defined as s(t) =
1

100

100

∑
k=1

xk(t).

It should be noted that the isolate delayed dynamical network

ẋ(t) = Ax(t)+g(t,x(t),x(t−1)), (22)

is actually a chaotic delayed Hopfield neural network [10, 11, 12]. (see Fig. 1).
Now we consider an scare-free network with 100 dynamical nodes. We here take

the parameters N = 100, m = m0 = 5 and κ = 3, then the coupling matrix B = Bs f of
the SF network can be randomly generated by the B-A scale-free model [13]. In this
simulation, the second-largest eigenvalue and the smallest eigenvalue of the coupling
matrix Bs f are λ2 =−1.2412 and λ100 =−34.1491 respectively.

For simplicity, we consider the equidistant impulsive interval τk−τk−1 = 0.1 and
dk = −0.6000(k ∈ Z+). By taking k11 = 2, k12 = 0.1, k21 = 5.0, k22 = 3.0 and δr =
12(r = 1,2), it is easy to verify that if γ1 = γ2 = 6, then all the conditions of Theorem
1 are satisfied. Hence, the the controlled coupled delayed neural network (20) will
achieve robust impulsive synchronization. The simulation results corresponding to
this situation are shown in Fig. 2.
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Figure 1: A fully developed double-scroll-like chaotic attractors of the isolate delayed
Hopfield neural network (22).
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Figure 2: Impulsive synchronization process of the state variables in the controlled
coupled delayed neural network (20).

5 Conclusions
In this paper, we have investigated the issues of robust impulsive synchroniza-

tion of coupled delayed dynamical networks. Some simple criteria for robust impul-
sive synchronization of such dynamical networks have been derived analytically. It
is shown that the theoretical results can be applied to a typical coupled chaotic de-
layed Hopfield neural networks, and the numerical results are given to verify and also
visualize the theoretical results.
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