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Abstract The ability to detect and respond to changes in the extracellular environment is a ba-
sic necessity for survival of all organisms. Consequently, diverse bio-rhythms are generated by
hundreds of cellular oscillators that somehow manage to operate synchronously under various fluc-
tuated environments. It remains, however, to be exploited how behaviors of a noisy microscopic
molecule affect the macroscopic behaviors in the weak coupling or even without coupling between
cells. Using a multi-cell system, we show that a common noisy signaling molecule can induce in-
phase synchronization across an ensemble of independent gene oscillators in Escherichia coli, lead-
ing to a collective response or rhythm. Such a mechanism of achieving biological rhythms would
be exploited by realistic living cells to sense the extracellular signal. In addition, the model system
considered here provides a quantitative example of phase transition from non-synchronization to
synchronization across a population of biological oscillators.

1 Introduction
All organisms have the ability to detect and respond to changes in the environ-

ment for their survival, and as a result, a variety of mechanisms have evolved by
which organisms sense their environment and respond to signals that they detect,
e.g., bacterial “quorum sensing”[1,2]. The response involving movement may be ki-
nesis or taxis, or their combination. Both tactic and kinetic responses involve two
major steps: (1) detection of the signal and (2) transduction of the external signal
into an internal signal that triggers the response. In the absence of external cues,
a random walk strategy is usually adopted to determine their pattern of movement.
In several systems [3], including the flagellated bacterium E. coli and the amoeboid
cell Dictypostelium discoideum, a detailed understanding of how extracellular signals
are transduced into behavioral changes is emerging from experimental works, while
at the macroscopic level solutions of the classical chemotaxis equations have been
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well investigated. However, the chemotaxis equations to date have been based on
phenomenological descriptions of how cells respond to signals, and at present there
is little understanding of how behaviors of a microscopic molecule affect the macro-
scopic behaviors or induce the collective rhythms. In particular, how a common noisy
signaling molecule induces collective behaviors of independent oscillatory cells has
not been well explored yet.

Previous works have indicated that some mechanisms of intercell coupling (e.g.,
quorum-sensing mechanism) would globally enhance the collective response of a
population of genetic oscillators. However, coupling among oscillators is not, in
general, sufficient to achieve synchronization, and many ensembles of coupled os-
cillators exhibit phase dispersion rather than a synchronized state either because the
oscillators actively resist synchronizing [4] or because coupling is too weak or even
nonexistent [17,5]. Here, by mathematical and computational modelling, we show
that a common noisy signaling molecule can drive an ensemble of uncoupled genetic
oscillators in Escherichia coli to be in-phase synchronized, leading to a robust col-
lective response in the system. The essential factor of achieving such an effect is the
extracellular noise.

In general, physiological oscillators can be synchronized through appropriate
external stimuli. These stimuli would be some noisy signals which are in this paper
assumed to stand for uncertain factors in the extracellular environment. It is important
to analyze the effect of the stimuli on intrinsic physiological rhythms since the better
understanding of the interactions between the stimuli and physiological rhythms may
lead to the development of artificial control strategy and medical therapy. However,
the wiring of naturally occurring gene regulatory networks would be too complex
for qualitative description devoid of mathematics. This complexity has hindered a
complete understanding of natural gene oscillators. Synthetic gene networks, on
the other hand, offer an alternative approach aiming at providing a relatively well
controlled test bed in which the functions of natural gene networks can be isolated
and characterized in detail [6]. In this direction, several synthetic biological systems,
e.g., the toggle switch [7], the repressilator [8] and the relaxation oscillator [9], were
developed recently in Escherichia coli. Such simple networks represent a first step
towards logical cellular control, whereby biological processes can be manipulated or
monitored at the DNA level [10]. Clearly this control could have a significant impact
on post-genomic research [6].

In this paper, based on an artificial gene regulatory network [9], we introduce a
multicellular system where there is no coupling between cells but a common noisy
signaling molecule freely diffuses into each cell through the cellular membrane to
regulate the expression of a target gene. The resulting diffusion results in a collective
rhythm across a population of such gene oscillators, where phases of the oscillators
are recoordinated mainly by the noise.

Recently, J.Garcia-Ojalvo et al [12] modelled a synthetic multicellular clock by
using repressilators coupled by quorum sensing. In that model, since there is an in-
formation exchange between cells through an intercell signaling, it is not difficult to
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understand that a population of the cells finally achieve a cooperative behavior. The
similar types of models including those in refs.[13-15] were also investigated. How-
ever, if there is no coupling between cells, achieving a collective behavior across a
population of the cells is not easy and must be carefully investigated. This is because
the different transmission way of signaling molecules between cells would result in
a different synchronization mechanism.

Our results indicate that the noise signaling molecule not only drives the mul-
ticellular system to realize transition from non-synchronization to synchronization,
but also amplifies the amplitude of oscillation of the individual cells. The latter effect
that is not intuitive but still can be identified in the repressilators coupled by quorum
sensing [12], implies that the external signaling molecule can be taken as an ampli-
fier, which actually makes biological quantities (e.g., the expression levels of genes
and the concentrations of proteins) more observable in the biological experiments.

2 Results
2.1 Model

The designed synthetic gene networks are shown in Fig.1, where we utilize ge-
netic components from the virus bacteriophage λ . We assume that there are two
DNA plasmids consisting of the promoter and gene regions. On one plasmid, we
adopt the promoter PRM, which contains three operator sites known as OR1, OR2 and
OR3. The gene cI under control of the promoter PRM produces the protein CI, which
stimulates its own production at a low concentration and shuts off the promoter at a
high concentration. On a second plasmid, we again utilize the promoter PRM, but here
we insert the gene encoding the protein RcsA. The crucial interaction is between the
proteins RcsA and CI. To introduce an external perturbation to each cell, a promoter
PlacLux0 that is enhanced by a small molecule AI, is also inserted on the first plasmid
to control another gene cI.

Figure 1: The schematic diagram of a gene regulatory network
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Define the concentrations of proteins as dynamical variables: x = [CI], y =
[RcsA] and z = [AI] (here we use the same symbol to represent the concentration
of the signal molecule inside the cells and in the extracellular environment). Then,
the rate equations describing the evolution of the concentrations of the proteins CI
and RcsA are given by (3) (see Methods for details). The dynamical evolution of
the signaling molecule AI in the extracellular medium is assumed to be affected by
degradation and synthesis, and also to be fluctuated by a noise. The dynamics of the
protein AI are given in (4) (see Methods for details).

In the hypothetical case of infinite cell dilution (γ → 0), the system consists of
independent relaxational-type oscillators. γ represents the degradation of the AI in
the extracellular medium, and σ is the intensity of the common noise, as described in
Methods. In the presence of the noisy signaling molecules, a new degree of freedom
is added to the original two-dimensional phase space to represent dynamics of the
molecules governed by Eq. (4). The resulting system can exhibit synchronous peri-
odic oscillations in a wide region of parameter space (see Fig. 2 (b)). In particular,
the amplitude of the oscillation can be amplified (see an example in Fig. 2(a)) with
the increasing of the intensity of the noise or the value of the parameter β or with
the decreasing of the degradation rate γ of the signalling molecules (but the shape
of the waveform does not change significantly). In other words, the characteristic
oscillation of the original relaxation oscillator does not change qualitatively. Such
a case is somewhat similar to that observed in the repressilators coupled by quorum
sensing (but the oscillation amplitude for the latter is only slightly changed). Since
the parameters γ and σ play a similar role within the synchronization region in our
model, in the following we will mainly investigate the effect of the parameter σ on
the dynamics of the entire system. In fact, we are more interested in the effect of
noise.
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Figure 2: (a) An extracellular noisy signalling can amplify the oscillation amplitude,
where γ = 0.2 and σ = 0.5; (b) The phase diagram for the parameters γ and σ . In
both of cases, mx = 10, my = 1, γx = 0.1, γ = 0.01, γxy = 0.1, ε1 = 2.0, ε2 = 0.08,
α = 11, β = 2.0 and z0 = 3.0;
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2.2 Phase Transition
Observing the change of phases is a precision way for identifying synchroniza-

tion of a population of oscillators. To quantify the degree of synchronization of states
of the N genetic oscillators, we introduce a “synchronization quantity" ρ(t) for the
entire system, which is defined as [16]

ρ(t) =

∣∣∣∣∣
1
N

N

∑
k=1

exp(2πiθk(t))

∣∣∣∣∣ , (1)

using phase θk of each oscillator, where i =
√−1. Then, ρ(t)→ 1 or 0 with t → ∞

indicate that the N oscillators achieve or do not achieve synchronization, respectively,
whereas ρ(t)→ ρ0 with 0 < ρ0 < 1 displays that they merely reach partial synchro-
nization.

We initially set the phase θk of each oscillator uniformly and randomly on
[0, 2π/T ] (T denotes the period of oscillation), where the zero-crossing point of
xk(t) = xk(t)−X0 (X0 is chosen to be between the minimal and the maximal am-
plitudes of oscillation) from xk < 0 to xk > 0 is chosen as the origin of phase, θk = 0.
Fig. 3 displays the temporal evolution of the synchronization quantity 〈ρ(t)〉 aver-
aged over 1000 realizations from different initial conditions. It gradually increases
from a small value to 1 for the intensity of noise σ = 0.8, implying that a transi-
tion from initial unsynchronous phases to the final synchronous phase takes place
in the population of the cells. In this case, the noise plays a role of “ordering" by
recoordinating phases of the individual oscillators.
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Figure 3: The synchronization quantity introduced here shows phase transition,
where γ = 0.1 and σ = 0.8. The other parameters are the same as those in Fig.
2

2.3 Transition to Synchronization
The synchronization transition was predicted theoretically in the mid-1960s

[4,17], but only recently, a quantitative experimental realization of this phenomenon
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was reported in the repressilators coupled by quorum sensing [11,12]. Here, we pro-
vide another example for such an interesting phenomenon, where a population of
independent gene oscillators are unidirectionally linked only by a common noisy sig-
naling (see Fig. 1 or Eqs. (3) and (4). The corresponding frequency distribution of
1000 independent cells is shown in Fig.4 (a) and (c) for two different σ = 0.6 and
σ = 0.8. The temporal evolution of concentration of the protein CI in 10 of those
cells is plotted in Fig.4. (b) and (d), showing how the multicellular system undergoes
a transition from the completely disorganized to the synchronized state.
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Figure 4: Frequency histogram and time evolution of CI for 10 cells. (a) and (b)
correspond to γ = 0.3 and σ = 0.6, and (c) and (d) to γ = 0.1 and σ = 0.8. The other
parameters are the same as those in Fig. 2.

Fig. 4 indicates that a transition to synchronization takes place when the inten-
sity σ of the noise changes. To describe quantitatively the dependence of the global
behaviors of the N genetic oscillators on the the parameter σ , we introduce an “order
parameter". For this, we first compute the average signal S(t) = (1/N)∑N

k=1 xk(t).
Note that its temporal behavior in the synchronized case (Fig. 4(c)) will be similar to
each one of the local signals xk(t). On the other hand, in the unsynchronized situation
Fig. 4(b), the individual signals xk(t) are completely out of step with respect to each
other, and their sum will be averaged out to an approximately constant value at all
times. Accordingly, we define the “order parameter" R as the ratio of the standard
deviation of the time series of S to the standard deviation of xi(t) averaged over i,

R =
〈S2(t)〉−〈R(t)〉2

〈x2
i (t)〉−〈xi(t)〉2

, (2)
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where 〈·〉 denotes time average, and ... indicates average over all cells. In this way,
R = 1 corresponds to complete synchronization, R = 0 to non-synchronization, and
0 < R < 1 to partial synchronization. A slow (but not sudden as in ref.[12]) change
between these two limiting values indicates that the system undergoes a transition
from unsynchronization to complete synchronization. Such a change is shown in
Fig. 5, which plots the dependence of R on the intensity of noise. Such a noise-
induced transition to synchronization also occurs in the case that k is changed (the
corresponding numerical results are not shown here).
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Figure 5: Synchronization transition induced by σ and γ . The other parameters are
the same as those in Fig. 2.

2.4 The Characteristic of the Lyapunov Exponent
It is well known, the Lyapunov exponents are important quantities, which can

characterize the dynamical behaviors of a nonlinear system qualitatively, e.g., the
negative Lyapunov exponents indicate that the system is contracting. To describe
further the transition to synchronization appearing in the above section, we plot Fig.
6, which displays the dependence relationship of the Lyapunov exponent LE for the
phase difference equation (see Supporting Materials of the paper) on the intensity σ
of the noise.

3 Discussion
A recent experimental study [18] has shown that the interplay of gene regula-

tory networks with population dynamics can lead to the diversity of cell activity that
in turn affects (possibly enhances) global behaviors of the entire system due to the
effect of noise. Another related study [8] has indicated that extracellular noises aris-
ing from changes in cellular environment possibly prevent the observation of macro-
scopic rhythms in an ensemble of synthetic gene oscillators. On the other hand, it has
been verified that the noise has the “ordering" effect [19-21]. Our result has provided
another evidence in verifying such an effect of the noise.

Previous works have demonstrated that quorum sensing can lead to synchro-
nization in an ensemble of identical gene oscillators [12-14]. Even in the case that
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Figure 6: The dependence of the Lyapunov exponent on σ , where γ = 0.05, and the
other parameters are the same as those in Fig. 2.

individual oscillators oscillate in a noisy fashion, Jordi et al’s work has indicated that
coupling can transform effectively an ensemble of “sloppy" biological clocks into a
very reliable collective oscillator [12,22-24]. In both cases, there is an information
exchange between cells through intercellular signaling. Our results has displayed
that an ensemble of independent gene oscillators can be also synchronized by noisy
signaling molecules that enter each cell through the cell membrane to regulate the
expression of a target gene.

In McMillen et al’s theoretical study [13], the individual relaxation oscillators
are based on both positive and negative feedback, and their dynamics are governed
by two widely different time scales. Oscillations are characterized by abrupt changes
in the chemical concentrations. The dominant mechanism leading to synchroniza-
tion of an ensemble of the oscillators is fast threshold modulation; In Jordi et al’s
work [12], only negative feedback is made use of and all biochemical species are
assumed to have similar decay rates. Oscillations are approximately sinusoidal, with
no abrupt jumps or decays of the dynamical variables. The synchronous behavior of
a population of the oscillators can be robustly achieved. In both of cases, the quorum-
sensing apparatus is incorporated into the repressilator, implying also that there is an
information exchange between cells through signaling molecules. In contrast to these
two models, our model only makes use of a negative feedback and an extracellular
noisy signal is added to relaxational-type genetic oscillators to mediate the collective
rhythm of a multicellular system. Except that a collective behavior across the popu-
lation of the cells is robustly achieved, the oscillations are approximately sinusoidal,
without jumps, similar to what happens in the phase oscillators that have long been
used to model biological rhythms [4,25].

In synchronization efficiency, McMillen et al found that a perfect synchrony was
achieved within two oscillation periods, starting from an ensemble of oscillators with
randomly distributed phases, whereas Jordi et al found that synchronization can be

Synchronizing Independent Gene Oscillators 163



achieved in a few cycles, i.e., in time windows of the same order of magnitude as
those required by fast threshold modulation in relaxation oscillators. We also exam-
ined whether synchronization of repressilators requires much longer time windows,
and found that the result is basically similar to that obtained by Jordi et al. In ad-
dition, for our model the synchronization efficiency depends on the intensity of the
noise: for some moderate strengths of the noise, the efficiency is optimal (see Fig.).

In mathematical analysis, we have provided a rigorous treatment in Appendix
of the paper in the case of weak noisy signals. We have shown, by applying phase
reduction methods in the limit where the individual oscillators are indirectly driven
by common weak noisy signal molecules, that the collective phase synchronization is
achieved in the sense of negative Lyapunov exponent. Our theoretical and numerical
results (see Fig.) have also demonstrated that the system undergoes a phase transition
to mutual synchronization of the same type seen in the Kuramoto model [17].

Finally, we point out that extracellular weak noisy signals can enhance collec-
tive phenomena among non-coupled cells in a constructive way where the noise first
affects a signaling molecule which is then diffused into each cell through the cell
membrane to regulate the expression of a target gene. The signaling molecule plays
a role similar to a common “baiter" for a population of cells in E. coli, which leads
to chemotaxis, or other cooperative behaviors in the living organisms. It has been ob-
served in many biological and physical systems that weak noisy signal can enhance
ordering, such as stochastic resonance in Ion Channels and noise-mediated signal-
sensing. Our result further confirms that the common additive noise is one of the
important forces for mediating the cooperative dynamics.

4 Methods
We define the concentrations of proteins as dynamical variables: x = [CI], y =

[RcsA] and z = [AI] (here we use the same symbol to represent the concentration of
the signal molecule inside the cells and in the extracellular environment). Then, the
rate equations describing the evolution of the concentrations of the proteins CI and
RcsA are given by (see [9] for details):

dxk
dt = mx f (xk)− γxyxkyk− γxxk + β z

1+z ,
dyk
dt = my f (xk)− γyyk,

(3)

where f (x) = (1+x2 +αε1x4)/(1+x2 +ε1x4 +ε1ε2x6). Here mx and my are the num-
bers of plasmids per cell, respectively; α > 1 is the degree to which transcription
is enhanced by dimer occupation of OR2; εi (i = 1, 2) represent binding strengths
relative to the dimer-OR1 strength; β is the maximal contribution to CI transcrip-
tion of saturating amounts of AI. The AI activation is chosen to follow a standard
Michaelis-Menten kinetics. In deriving the equations, we assume that the concen-
tration of RNA polymerase remains constant during time. Note that the two cI tran-
scripts are assumed to be identical. The model is rendered dimensionless, and the AI
concentration is scaled by its Michaelis constant.
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Finally, the dynamical evolution of the signaling molecule AI in the extracellu-
lar medium is assumed to be affected by degradation and synthesis, and also to be
fluctuated by a noise. Consequently, the dynamics of the protein AI are governed by

dz/dt = z0− γz+ξ (t), (4)

where z0 and γ are the initial synthesis quotiety and degradation of the AI, respec-
tively. Here ξ (t) is assumed as the Gaussian white noise, which is normalized as
〈ξ (t)〉= 0 and 〈ξ (t)ξ (t ′)〉= 2σδ (t− t ′).

The model system (3) and (4) is different from the ones for cellular communica-
tion [12-14], and the important difference between them is that for the former there
are no information exchanges between cells (the signaling molecule unidirectionally
regulates the expression of a target gene), whereas for the latter there are information
exchanges between cells (a signaling molecule freely diffuses into the extracellular
environment through the cell membrane, and in turn enters each cell to regulate the
expression of a target gene after a mixing process).
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Supplementary Information
Theoretical analysis for synchronization of gene oscillators

In this appendix, we prove that the system with small common noise can be
ensured to be synchronized even without coupling, and also provide the condition for
partial synchronization.

To describe qualitatively the synchronization phenomenon of N nonlinear os-
cillators (including identical and slightly different limit cycle oscillators) induced by
the common noise, we first analyze the variable z in Eqs. (3)–(4) by introducing the
probability distribution P(z, t) in a state z at time t. Note that z independently changes
in contrast to other variables, and is a stochastic variable. Since a translational trans-
formation of z does not affect the dynamics of system (3)–(4), we may assume z0 = 0.
In this case, we can give the expression of the steady-state mean of z by

〈z〉ss = Γ0

∞∫

0

ze−(1/σ)φ(z)dz =
Γ0σ
γz

,

where the potential φ(z) is introduced: φ(z) = −∫
(−γzz)dz = (γz/2)z2, and Γ0 is

a normalization constant determined by requiring that the integral of Ps(z) (here we
denote by Ps(z) the steady-state solution to the Fokker-Plank equation for P(z, t) )
over all z is unity. Therefore, the variable z and further the term β z/(1 + z) can
be viewed as Markov processes for sufficiently small σ and β , respectively. After a
translational transformation of z (see the above context for reasons), we may consider
a more general model instead of Eqs. (3)–(4):

dXi

dt
= Fi(Xi)+η(t), 1≤ i≤ N. (5)

Here, Fi(Xi) = F(Xi)+∆Fi in which ∆Fi is a small deviation and derived from differ-
ent β or γk for the different cell, and η(t) is a vector of Gaussian white noises, whose
elements are normalized as 〈ηk(t)〉= 0, 〈ηk(t)ηl(t ′)〉= 2Dklδ (t− t ′) with D = (Dkl)
being a variance matrix of the noise components. For generality, here some η j(t)≡ 0
are included in the case of consideration. We suppose that the common additive noise
is weak (i.e., Dkl << 1) to the deterministic perturbed oscillators.

Note that a self-sustained oscillator with a small external force can be adequately
described within the phase approximation [19], where only variations of the phase
are concerned. With a stochastic force, the equation for the phase of the oscillator
dX/dt = F(X) reads

ϕ̇ =
dϕ
dt

= ω + ε
n

∑
i=1

fi(ϕ)ηi(t), (6)

where ε is a small noise amplitude and each component of ( f1(ϕ), f2(ϕ), · · · , fn(ϕ))=
Z(ϕ) = gradX ϕ|X=X0(ϕ)(where X0(ϕ) is the unperturbed limit-cycle solution) is nor-
malized: f 2

i ≡ (2π)−1 ∫ 2π
0 f 2

i (ϕ)dϕ = 1. The Lyapunov exponent (LE) for the noisy
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dynamics is defined as λ =< dϕ̇/dϕ >=< ε
n
∑
i=1

fi(ϕ)ηi(t) > . In the case of white

Gaussian noise < ηi(t) >= 0 and < ηi(t)η j(t + t ′) >= 2δi jδ (t ′), the LE

λ = −ε2
n
∑
i=1

( f ′i )2 (see Refs.[18,26]) is negative. This implies that two or more os-

cillators driven by the same noise will be synchronized and attain the same random
variation in time phases.

On the other hand, the evolution of N slightly different limit cycle oscillators
can be described by the following generalization of Eq.(6):

dϕk

dt
= ω +σk + ε

n

∑
i=1

fi(ϕk)ηi(t), (7)

where σk are deviations of frequencies from the mean frequency ϕ = N−1 ∑N
k=1 ϕk,

and assumed to be satisfied ∑N
k=1 σk = 0. Note that the differences in functions fi(ϕk)

can be neglected due to smallness of ε . It is expected that the states of the oscillators
are close if the mismatch is small compared to the LE, i.e., if |σk|<< |λ |<< 1. Now,
we introduce new variables: ϑ j = ϕ j−ϕ (1≤ j ≤ N−1). Then,

dϕ
dt = ω + ε f (ϕ)η(t),
dϑ j

dt = σ j + ε
n
∑
i=1

f ′i (ϕ)ϑ jηi(t).
(8)

Since the deviations ϑ j with the different j are independent, we can study the evo-
lution of each deviation ϑ j separately and drop index j. For simplicity, we consider
only the case that the noisy is one component (scalar noise in terms of Ref. [26]) in
the following.

From Eqs.(8), the Fokker-Planck equation for the probability density distribu-
tion W (ϕ,ϑ , t) reads

∂W
∂ t

+ω
∂W
∂ϕ

+σ
∂W
∂ϑ

− ε2L2W = 0, (9)

where the operator L is defined as Lg = (∂/∂ϕ)( f (ϕ)g)+(∂/∂ϑ)[ f ′(ϕ)ϑg]. With-
out loss of generality, we assume that σ is of the same order as ε2. Then, for the
stationary solution of Eq.(9) we can expand W in ε as the following form:

W = W0 + ε2W1 + · · · , (10)

where W0 = w(ϑ) is a certain function only in ϑ and W1 is a function in both ϕ and
ϑ . By utilizing periodicity of W1 in ϕ , we can obtain

σ
du
dϑ

= ε2 f ′2
(

ϑ 2 d2u
dϑ 2 +4ϑ

du
dϑ

+2u
)

, (11)

where u = w+(2π)−1( f f ′)|2π
0 . Finally, we obtain by solving the two-order differen-

tial equation,

w(ϑ) =

{
|σ |

2π|λ0|ϑ 2 exp
(
− σ
|λ0|ϑ

)
− 1

2π ( f f ′) |2π
0 , σϑ > 0

0, σϑ ≤ 0
(12)
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where λ0 =−ε2( f ′)2. Furthermore, we can evaluate the moments

〈|ϑ |k〉 =
( |σ |
|λ0|

)k

Γ(1− k)− 1
2π

( f f ′)|2π
0 Γ(1). (13)

The formula gives finite moments for k < 1 only. Higher moments diverge due to
the power-law distribution of ϑ . In the case, to obtain finite moments one has to go
beyond the linear approximation in ϑ even for small mismatches σ . Under some
circumstances, some leading LEs of Eqs.(7) are positive whereas other LEs are neg-
ative, implying that the partial synchronization is achieved. Also refer the previous
Fig. 6.
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