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Abstract We have studied the chaos control in chaotic neural network by limiting the phase space
at varying time interval. It provides a controlled output patterns with different temporal periods de-
pending upon the control parameters. The chaotic neural network constructed with chaotic neurons
exhibits very rich dynamic behavior with a non—periodic associative memory. In the chaotic neural
network, it is difficult to distinguish the stored patterns from others, because of the chaotic states
of output of the network. In order to apply the non—periodic associative memory into information
search and pattern identification, etc, it is necessary to control chaos in this chaotic neural network.
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1 Introduction

Chaos in neural network has attracted much interest in recent years because of
its rich chaotic dynamics and potential applications in optimization and information
processing, etc [1, 2, 3]. The chaotic neural network possesses the characters of
larger memory content and good tolerance, etc as compared to the Hopefield neural
network. The chaotic neural network has shown a non—periodic associative memory,
but its associative memory is realized in the chaos dynamics of the network. The
outputs of the network are non—periodic states which change continuously and can
not be stabilized in one of its stored patterns. One therefore meets difficulties in
the application of the associative memory in information processing. To achieve the
information processing in the chaotic neural network, we should put the control on
the network and let the network to be stable in an expected pattern.

In previous works, He et al. achieved control in chaotic neural network using
the pinning [4] and phase space constraint methods [5]. In the phase space con-
straint method, the chaos in the CNN is controlled by limiting the phase space and
the network converges in one of its stored patterns or their reverse with temporal
period p = 1 which has the smallest Hamming distance with the initial state of the
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network. In this work, we have applied the phase space constraint method at varying
time intervals to control the chaotic neural network. This mechanism provides a de-
sired output patterns with different temporal periods, p > 1, as compared to the phase
space constraint method applied at very time step having a controlled output pattern
with temporal period p = 1. We investigate the range of spatio—temporal patterns of
controlled chaotic neural network with temporal periods p for different initial pat-
terns. In the CNN, the associative memory is represented by the chaotic wandering
around all stored patterns [2], while in the controlled CNN, the associative memory
dynamics has a periodic state with a desired period p and only the stored pattern re-
lated with an initial pattern and its reverse pattern appear in an output sequence. This
characteristic shows that the application of the controlled CNN to information pro-
cessing is feasible. The details of chaotic neural network is presented in next section
followed by the control method, results and conclusions.

2 The Chaotic Neural Network Model

The chaotic neural network model is proposed by Aihara to study the chaotic
response of biological neuron [1, 2]. A chaotic neural network is constructed with
chaotic neurons by considering the spatio—temporal summation of both the external
inputs and feedback inputs from other chaotic neurons [1]. In the chaotic neural
network, the dynamics of ith chaotic neuron is described as follows:

xi(t+1) = fim(t+1)+ Gt + 1)), (1)
ni(t+1) Zkfﬂi(f)Jr%Wuxj(l)a (2)
Gt +1) =k.G(t) — aglx(t)] + ai. 3)

where x;(¢) is the output of the neuron. 1);(¢) and {;(¢) are the internal state variables
for feedback input from the constituent neurons in network and refractoriness at time
t, respectively. f(-) and g(-) are the output function and the refractory function of
the neuron, respectively. We take the output function of the neuron f(x) as Sigmoid
function with the steepness parameter &, i.e., f(x) = 1/[1 +exp(—x/¢€)], refractori-
ness function as g(x) = x. « is the refractory scaling parameter. a; is the threshold
of neuron. k; and k, are the decay parameters for the feedback inputs and the refrac-
toriness, respectively. w;; are synaptic weights to the ith constituent neuron from the
Jjth constituent neuron, the weights are defined according to the following symmetric
auto—associative matrix of n binary patterns:

n
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where x! is the ith component of the pth binary pattern. In this way, the binary
patterns can be stored as basal memory patterns. We use a picture composed of
10 x 10 matrix to show the stored patterns of the neural network constructed with
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Figure 1: Four stored patterns

100 neurons. A neuron with its output x; equal to 1, which means the neuron is
“exciting”, is represented by a block “Il” while a neuron with its output x; equal to 0,

T3]

which means the neuron is “resting”, is denoted by a dot

t o= 140

t = 163

t =172 t =174 t =175 t =17 t =177 t =178 t =179 t =180

Figure 2: The sequence of the uncontrolled output patterns of the chaotic neural
network with initial state of Fig. 2(a).

This chaotic neural network can recall acyclic pattern sequences by using auto—
correlative associative memory [2]. When the decay parameters of the network are set
to certain values, the network generates non—periodic sequential patterns including
the stored ones as its output sequence. Four stored patterns studied in this paper are
shown in Fig. 2. The sequence of the output patterns for the network is shown in Fig.
2 with a initial state of Fig. 2(a). The parameters of the network are taken as o =
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t =135 t =136

t = 165 t = 166

t =171 t =172 t =173 t =174 t =17 t =176 t =177 t =178 t =173 t =180

Figure 3: The sequence of the controlled output patterns of the chaotic neural network
of initial pattern Fig. 2(a) with {* =5 and ¢, = 5.

10.0,4; =2.0(i = 1,2,...,100),k; = 0.20 and k, = 0.95. The output of the network
exhibits the complex dynamic behavior in time and space [2]. Though the stored
patterns are included in the outputs, the network can not be stabilized in one stored
pattern or near it. It is therefore impossible to carry out the information processing in
the network. In order to search the stored patterns involved in the network, one needs
to control the chaos dynamics in the chaotic neural network.

3 Control Method

In 1990, a chaos control procedure is proposed by Ott et al. [7]. This method,
known as the OGY method, consists on stabilizing a desired unstable periodic orbit
embedded in a chaotic attractor by using only a tiny perturbation on an available con-
trol parameter. Another chaos control strategy was proposed by Pyragas [8]. In this
case the method implementation requires a delay feedback signal. Several another
control methods proposed are chaos synchronization [9], delayed self-controlling
feedback [6], pinning control [4] and phase space compression[5], etc. There are
two ways to make nonlinear systems converge on a stable or periodic state from a
chaotic state: a feedback control and a non—feedback control.

In previous work by He et al. [5] the controlling aim was achieved by limiting
existent space of the chaos. The dynamic structure of the chaotic neural network is
changed by constraining the existent area of its states. By this method, the chaotic
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Figure 4: The sequence of the controlled output patterns of the chaotic neural network
of initial pattern Fig. 2(a) with {* = 5 and 7. = 6.

motion can be controlled with a desired output pattern with temporal period p =1. In
the present study, we apply a phase space constraint method at varying time interval
to control chaos in chaotic neural network. By varying the control time interval,
we can target a controlled output pattern with desired temporal periods p > 1. This
method provides a controlled chaotic neural network without any loss of network
dynamics as compared to the fixed point solution of previous results.

For the chaotic system described by Eqs.(1) ~ (3), the feedback input variable
N and the refractoriness variable { constitute its phase space. One can apply the
control on either the refractoriness or the feedback input variable. In the Ref. [5],
chaos is controlled in the chaotic neural network by limiting the freedom phase space
of the internal states of the network. That is, the thresholds &,... and {,;, is set. If
the &i(¢) > Gnax O (1) < Cax» and let the §i(7) = Cpux 01 §i(1) = Cpax, respectively.
The excess values of the parameter { are removed from the particular neuron, which
provide a desired controlled state of the neural network.

Here, the control is triggered when the absolute value of variable { of a partic-
ular neuron exceeds the critical value {* at certain time 7. = 1,2,3,4,..., i.e. when
|Ci(t.)| > £*. The Egs. (1) ~ (3) together with following equation (Eq. 5) constitute
the dynamic model of the controlled chaotic neural network.

Gi(te) = £&° (5)
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Figure 5: The Hamming distance between the (a) uncontrolled and (b) controlled
output pattern of the network and the stored pattern of Fig. 2(a) for {* = 5 and 7. = 5.

The results with 7. = 1 corresponds to the previous work by He et al. [5]. Here
we study the chaos control in chaotic neural network with 7. > 1 to get a controlled
output pattern with temporal period p > 1. The controlled chaotic neural network
can be stabilized in one of the stored patterns with temporal period p when {* and ¢,
are suitably chosen. In the numerical simulation, we find that the controlled network
converges on a stable state after a few steps. The chaotic neural network changes
from non—periodic chaotic dynamics to a stable orbit with some periodicity p which
depends on both the {* and 7.. Here, we show the sequences of the outputs for the
controlled network in Fig. 2 and Fig. 3 with {* = 5 and 7, = 5, 6 for initial pattern of
Fig. 2(a). The output pattern is controlled and the initial pattern is obtained with a
periodicity p = 20 and 12 for t. = 5 and 6 respectively. Similar results are found for
other initial patterns and patterns with noise.

We investigate the relation with the initial state and the stable output pattern of
the controlled network by calculating the Hamming distance. The Hamming distance
is defined as following:

100
HY =Y |x — x|, (6)
i=1

where x; is a initial state, x” is the ith component of the pth pattern. For the pth
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stored pattern, the Hamming distance will be 0 or 100 when initial state is the pth
stored pattern or its reverse pattern exactly, respectively. In Fig. 3, we have shown
the hamming distance between the initial pattern of Fig. 2(a) and the output pattern
under control with control parameters {* =5 and 7, = 5.

As compared to the previous phase space constraint method [5], where we get a
desired output pattern with periodicity p = 1, the present method provides a another
way of targeting a controlled output pattern with temporal period p > 1. Here we
have applied a control by limiting the refractoriness § at varying time interval 7, to
the neurons which provides a controlled output patterns from any initial pattern with
temporal period p, where the period p depends on the control parameters {* and
t.. This method has a advantage over the continuous time control method [5] as the
controlled chaotic neural network maintains its internal dynamics.

4 Conclusions

We have extended the chaos control method proposed by He et al. to target a
controlled output pattern. We have applied the chaos control method by limiting the
refractoriness § of chaotic neural network at varying time interval 7. In this method,
the divergence or spreads of an orbit is limited by applying the control at varying
time interval. The numerical simulation has proved that by employing the phase
space constraint method at varying time interval the chaotic motion of the chaotic
neural network can be controlled and the network converges on one of its stored
patterns or their reverses with temporal period p > 1. The period p of the controlled
network depends on the control parameters {* and .. The continuous time control
method provided a controlled output pattern with period one where the dynamics of
the network is lost while the present method of controlling the chaos at varying time
interval provides a controlled output pattern with higher periods without any loss of
network dynamics. Such chaotic neural network under control with desired temporal
periods of different patterns may have advantage over the controlled fixed temporal
period one patterns in the applications such as pattern recognition or memory search
etc. The controlled chaotic neural networks need to be explored further for their
rich spatio—temporal behavioral output patterns for possible applications to different
fields of computational, physical, and biological sciences.
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