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Abstract A deterministic mathematical model for the transmission dynamics of Influenza is stud-
ied. Although the equilibria of the model could not be expressed in closed form, their existence and
threshold conditions for their stability are theoretically investigated. It is shown that the disease-
free equilibrium is locally–asymptotically stable if the basic reproductive number R0 < 1 (thus,
Influenza can be eradicated from the community) and unstable if R0 > 1 (leading to the persistence
of Influenza within the community). A competitive finite-difference method will be constructed and
used for the solution of the resulting system of first-order, non-linear, initial-value problem (IVP).
Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters
exceed certain values, the novel numerical method to be developed in this paper gives convergent
results for all parameter values. The introduction of seasonal variation into the model leads to
periodic and chaotic dynamics of epidemics which are present in the numerical simulations.
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1 Introduction
Influenza is caused by a virus that can be of three different types (A, B and C,

see [13]). Among these types, the virus A is epidemiologically the most important for
humans, since it can recombine its genes with those of strains circulating in animal
populations (birds, swine and horses). These relatively rare recombinations give rise
every few decades to new viral subtypes via the so called antigenic shift mechanism
[15]. Much evidence [4,15] shows that the antigenic distance between two different
strains influences the degree of partial immunity, often called cross-immunity, and
conferred to a host already infected by one of the strains with respect to the other.

Many mathematical models have been proposed in the literature to describe the
inter-pandemic ecology of influenza A in humans (see [5] for a review). Andreasen
et al. [2] and Lin et al.[11] developed epidemiological models to shown that multiple
strains of influenza can persist in the human populations and that their prevalence can
exhibit self-sustained oscillations through time. Pease [13] studied the emergence of
new viral strains is that of introducing into the model a loss of immunity by the host.
Gill and Murphy [6] showed that the probability of recovered individuals being rein-
fected by new circulating strains linearly increases with the time since last infection.
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Casagrandi [3] introduced a new compartment C in the population, which can be
called cross-immune, to design an intermediate state between the fully susceptible
state (S)and the fully protected one(R). Kermack and McKendrick [9] introduced
epidemic models of temporary partial immunity – or variable susceptibility and have
recently been studied in the context of influenza [8]. Most of these studies, however,
appear to give scant or no detail of the numerical methods used, together with their
associated stability analyses, to solve the resulting initial value problems (IVPs).

It is well-known that solving nonlinear IVPs with explicit finite-difference meth-
ods such as Euler and Runge-Kutta methods can result in contrived chaos and oscil-
lations for certain values of the discretization parameters [7,10,14]. Although such
scheme-dependent numerical instabilities can often be avoided by using small time-
steps, the extra computing cost incurred when examining the long-term behavior of
a dynamical system may be substantial. To circumvent contrived chaos and other
scheme dependent numerical instabilities, implicitly-derived schemes with certain
additional desired properties are generally preferred.

It is the purpose of the present paper to present a simple finite-difference numer-
ical method for the solution of the so-called SIRC (susceptible/infectious/recovered/
cross-immune) model of influenza dynamics [3]. The method is first order, the same
as the well-known Euler method. Although implicit by construction, the method can
be implemented explicitly. The SIRC model with forcing is known to lead to more
complex oscillatory and chaotic behavior. In this paper, the dynamics of the SIRC
model with seasonal forcing using the proposed method are analyzed and tested in
numerical simulations.

The SIRC model is depicted in the compartment diagram, Fig. 1, and is ex-
pressed as the initial-value problem

dS
dt

= µ(1−S)+ γC−βSI,

dI
dt

= βSI +σβCI− (µ +α)I,

dR
dt

= (1−σ)βCI +αI− (µ +δ )R,

dC
dt

= δR−βCI− (µ + γ)C.

(1)

in which S = S(t), I = I(t), R = R(t) and C = C(t) represent the proportions
of susceptible, infectious, recovered and cross-immune, respectively, and a prime
denotes differentiation with respect to time, t. The model assumes a population of
constant size, N, so that N = S + I + R +C. Table 1 provides an interpretation of
the model parameters. Further details on the biological motivation and the associated
assumptions are given in [3].
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Definitions Values

µ The mortality rate 0.02 y−1

α Rate of progression from infective to recovered per year 365/3 y−1

δ Rate of progression from recovered to cross-immune per year 0.625 y−1

γ Rate of progression from recovered to susceptible per year 0.35 y−1

σ The recruitment rate of cross-immune into the infective 0≤ σ ≤ 1
β Contact rate per year 1200
ε Degree of seasonality 0≤ ε ≤ 1

Table 1: Model parameters

2 Analysis of the model
In this section, the model (1) will be qualitatively analyzed to investigate the

existence and stability of its associated equilibria.

2.1 Disease-free equilibrium
In the absence of infection (that is, I = 0), the model has a disease-free equi-

librium P0 = (1,0,0,0) which is obtained by setting the right-hand sides of (1) to
zero. To establish the stability of this equilibrium, the Jacobian of (1) is computed
and evaluated at P0. The local stability of P0 is then determined based on the signs of
the eigenvalues of this Jacobian. The equilibrium P0 is locally asymptotically stable
if the real parts of these eigenvalues are all negative. The Jacobian of (1) at P0 is

J(P0) =




−µ −β 0 γ
0 β − (µ +α) 0 0
0 α −(µ +δ ) 0
0 0 δ −(µ + γ)




with eigenvalues λ1 =−µ, λ2 =−(µ +δ ), λ3 =−(µ + γ)and λ4 = β − (µ +α).
Let R0 = β

µ+α , thus λ4 < 0if and only if R0 < 1. Since λi, i = 1,2,3,4 are
negative (since all model parameters are assumed to be positive), the infection-free
equilibrium P0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. The
quantity R0 is called the basic reproductive number of infection []. In the context
of epidemiological modeling (see [1]), it is generally known that if R0 < 1, then the
disease-free equilibrium is locally asymptotically stable (and the disease will be erad-
icated from the community if the initial sizes of the four state variables are within the
vicinity of P0). If the equilibrium P0 is globally asymptotically stable, then the dis-
ease will be eradicated from the population irrespective of the initial sizes of the four
state variables. Therefore, in the event of an epidemic, the theoretical determination
of conditions that can make R0 less than unity is of great public health interest.
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2.2 Endemic equilibrium
In the presence of infection (I 6= 0), model (1) has a unique endemic equilibrium

given by P∗ = (S∗, I∗, R∗, C∗) where

S∗ =
µ +α

β
−σ

[
δαI∗

[(µ +δ )− (1−σ)δ ]β I∗+(µ + γ)(µ +δ )

]
,

R∗ =
αI(β I∗+ µ + γ)

[(µ +δ )− (1−σ)δ ]β I∗+(µ + γ)(µ +δ )
,

C∗ =
δαI∗

[(µ +δ )− (1−σ)δ ]β I∗+(µ + γ)(µ +δ )
,

and I∗ is the root of the equation aI2 +bI + c = 0where

a = β µ2 +αµβ + µσδβ ,

b = β µ {α(2µ +δ + γ)+(µ + γ)(µ +δ )+ µ(µ +σδ )−β (µ +σδ )} ,

c = µ(µ + γ)(µ +δ )(µ +α)(1−R0) .

It is found that a is positive independently of the parameter values and cis negative
if and only ifR0 > 1. Given these constraints, the positivity and uniqueness of P∗

are guaranteed if and only if R0 > 1. Evaluating the Jacobian of (1) at P∗ gives the
characteristic polynomial: λ 4 +a1λ 3 +a2λ 2 +a3λ +a4 = 0

where a1 = 3µ +α + γ +2β I∗,

a2 = µ(µ + γ +β I∗)+α(µ + γ)+β I∗ [α−δ (1−σ)]

+(µ +β I∗)(2µ +α + γ +β I∗)+β 2S∗I∗+σβ 2I∗C∗,

a3 = (µ +β I∗) [(µ +α)(µ + γ)+β I∗(µ +α−δ (1−σ))]

+β 2S∗I∗(2µ + γ +β I∗) +β 2I∗C∗(γ +σ(µ +β I∗))

+σβ 2I∗C∗ [µ +α−δ (1−σ)]+αβ I∗(βS∗−δσ),

a4 = β 2I∗ [µ +α−δ (1−σ)] [βS∗I∗+C∗(γ +σ(µ +β I∗))]

+β I∗ [βS∗(µ +α)(µ + γ)− (γ +σ(µ +β I∗))δα ] .

Using Routh–Hurwitz stability criteria [10], the endemic equilibrium P∗ is locally
asymptotically stable provided

ai > 0, i = 1,2,3,4, a1a2−a3 > 0and a1a2a3−a2
1a4−a2

3 > 0.

3 The numerical method
The time variable t ≥ 0 will be discretized at the points tn = n` (n = 0,1,2, ...)

where ` > 0 is a constant time step. The solutions of (1) at the point tn are S(tn), I(tn),
R(tn) and C(tn). The solutions of the numerical method at the same point tn will be
denoted by Sn, In, Rn and Cn, respectively. Starting with the IVP for S in (l), first of
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all, the development of numerical methods may be based on approximating the time
derivative by its first-order forward-difference approximant given by

dS(t)
dt

=
1
`
[S(t + `)−S(t)]+ O(`) as `→ 0,

in which t = tn. The implicit first-order method for solving S in (1) is given by

1
`
[Sn+1− Sn] = µ(1−Sn+1)−βSn+1In + γCn, (2)

Similarly, the following are implicit methods for I, R and C respectively:

1
`
[In+1− In] = βSn+1In +σβCnIn− (µ +α)In+1, (3)

1
`
[Rn+1− Rn] = (1−σ)βCnIn+1 +αIn+1− (µ +δ )Rn+1, (4)

1
`
[Cn+1− Cn] = δRn+1−βCn+1In+1− (µ + γ)Cn+1, (5)

Rearranging the methods (2)-(5) give

Sn+1 =
Sn + `µ + `γCn

1+ `(µ +β In)
, In+1 =

In + `βSn+1In + `σβCnIn

1+ `(µ +α)
,

Rn+1 =
Rn + `(1−σ)βCnIn+1 +α`In+1

1+ `(µ +δ )
, Cn+1 =

Cn + `δRn+1

1+ `(β In+1 + µ + γ)
.

(6)

This method, (6), is denoted by DSS1 method. It should be noted that the method
{(2)-(5)} is implicit by construction, the numerical result is obtained explicitly by
solving a linear algebraic system at every time-step using (6). Furthermore, it is clear
that none of the discrete schemes (6) has negative terms on their right-hand sides for
0 < σ < 1. Thus, the discrete scheme (6) satisfies the positivity property, and hence
will not be expected to exhibit numerical instabilities.

The associated local truncation errors of DSS1 method are, respectively,

LS = [1+ `(µ +β I(t))]S(t + `)−S(t)− `γC(t)− `µ,
LI = [1+ `(µ +α)] I(t + `)− [1+ `βS(t + `)+ `σβC(t)] I(t),
LR = [1+ `(µ +δ )]R(t + `)−R(t)− [(1−σ)`βC(t)+ `α] I(t + `),
LC = [1+ `β I(t + `)+ `(µ + γ)]C(t + `)− C(t)− `δR(t + `),

(7)

in which t = tn. It is easy to show that the Taylor series expansions of the functions
in (7) about t lead to

LS =
[

1
2 S′′+(µ +β I)S′

]
`2 +O(`3) as `→ 0,

LI =
[

1
2 I′′+(µ +α)I′−βS′I

]
`2 +O(`3) as `→ 0,

LR =
[

1
2 R′′+(µ +δ )R′− [(1−σ)βC−α] I′

]
`2 +O(`3) as `→ 0,

LC =
[

1
2C′′+β I′C +β IC′+(µ + γ)C′−δR′

]
`2 +O(`3) as `→ 0.

(8)

It is evident from (8) that the principle part of the local truncations error as-
sociated with the DSS1 method is of order `2, thereby making the DSS1 method
first-order accurate. The convergence and stability properties of DSS1 method will
be compared with those of well-known method in the literature.
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4 Numerical Simulations
4.1 Effect of time-step (`)

To test the behavior of the DSS1 method, it was used to solve the SIRC model (1)
with the parameters in Table 1 and initial values were used:S(0) = 0.15, I(0) = 10−3,
C(0) = 0.44, R(0) = 1− S(0)− I(0)−C(0).The results are compared with those
obtained using the standard explicit Runge-Kutta method of order four (RK4).

The effect of time-step was monitored by using various values of time step, `, in
the simulations, and the results are tabulated in Table 2. It is evident from Table 1 that
the DSS1 method is far more competitive (in terms of numerical stability) than the
RK4 method which fails for `≥ 0.0378. Further numerous simulations suggest that,
irrespective of the time step and parameter values used, the DSS1 method always
gives monotonically-convergent results to the correct steady-state solutions suggest-
ing that the method is unconditionally-convergent. The superior stability property
of the novel method is consistent with the known fact that implicit methods, unlike
explicit methods, are more suited for integrating nonlinear IVPs.

4.2 The effects of seasonality
In this section, the seasonal SIRC model is studied by adding a forcing term

β (t) = β0(1 + ε cos2πt)to system (1). The two parameters β0 and0 ≤ ε ≤ 1 repre-
sent the rate of transmission and the degree of seasonality, respectively. The model
will be considered with β = 1200 for different values of ε; ε = 0.005, ε = 0.07 and
ε = 0.3. For all parameter values chosen, the model is run for 250 years and show
the results for the last 10 years (Fig. 2(a)–(b)) and 20 years (Fig. 2(c)). The period-
doubling sequence of the seasonal SIRC model generated by the DSS1 method is
shown in Fig. 2(a)–(c). As c increases, the solution passes from a period-one-year
cycle (Fig. 2(a)) to a two-year cycle (Fig. 2(b)) and to chaotic behavior (Fig. 2(c)).
The behavior-solutions appear to be almost coincident with Casagrandi et al. [3],
showing that the DSS1 method gives a reliable representation of the numerical solu-
tions associated with system (1) when β (t) = β0(1+ ε cos2πt).

` 0.005 0.03 1 10 1000
Method
GSS1

convergence convergence convergence convergence convergence

RK4 convergence convergence divergence divergence divergence

Table 2: Effect of time-step ` on the convergent of the methods

5 Conclusions
A competitive finite-difference method has been developed and used for the

solution of a mathematical model associated with the transmission of influenza A.
Unlike the RK4 which fails when certain time-steps are used, the implicitly-derived
explicit method gives results that converged (monotonically) to the true steady-states
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Figure 1: Time series of infective fraction using the DSS1 method with ` = 0.001,
β = 1200; (a) ε = 0.005, (b) ε = 0.07 and (c) ε = 0.3.

for any time-step used. The proposed method produced numerically-stable solutions
for the SIRC model and also produced solutions to the seasonal SIRC model which
were similar to reported in Casagrandi et al. [3].
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