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Abstract The classic Quadratic Assignment Problem (QAP) is one of the most interesting and
challenging combinatorial optimization problems in existence. Since QAP is NP-complete, it is
notoriously difficult to be solved by exact solution methods. This paper focuses on the intelli-
gent solution methods, particularly, genetic algorithms, and related development on QAP. A hybrid
genetic algorithm is devised to examine the solvability of QAP instances. Finally, advances and
research trends on the solution of QAP are discussed.

1 Introduction
1.1 Problem Statement

The quadratic assignment problem (QAP) was introduced by Koopmans and
Beckmann [Koo1957] in 1957 as a mathematical model for the location of indivisible
economical activities. QAP is often used to describe a location problem. Let us
assign n facilities to n locations with the cost being proportional to the flow between
the facilities multiplied with their distances. The objective is to allocate each facility
at a location such that the total cost is minimized. Thus we are given two n× n
matrices, the flow matrixA = (ai j), and the distance matrix B = (bkl). The QAP in
Koopmans-Beckmann form can now be written as

min
π∈Sn

n

∑
i=1

n

∑
j=1

aπ(i)π( j)bi j (1)

where Sn is the set of permutation of {1, 2, . . . , n}. Each individual productaπ(i)π(i)bi j

is the cost caused by assigning facility π(i) to location i and facility π( j) to location
j. An QAP instance with input matrices A and B is denoted by QAP(A, B), some-
times. If any of the coefficient matrices A, B is symmetric, QAP(A,B) is termed as a
symmetric QAP. Otherwise, QAP(A, B) is said to be asymmetric.

A slightly different problem also addressed as a QAP, and investigated by several
authors is the following. Besides the two coefficient matrices A and B we are given
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a third matrix C = (ci j), whose ci j is the cost of placing facility i at location j, and the
problem becomes:

min
π∈Sn

n

∑
i=1

n

∑
j=1

aπ(i)π( j)bi j +
n

∑
i=1

cπ(i)i (2)

This problem is called the generalized Koopamans-Beckmann QAP. In the case that
ci j = 0, for all 1≤ i, j ≤ n, we get the problems formulated in (1).

1.2 Applications
It is astonishing how many real life applications can be modeled as QAPs. A

natural application in location theory was used by Dickey and Hopkins [Dic1972] in a
campus planning model. The problem consists of planning the sites of n buildings on
a campus, where bkl is the distance from site k to site l, and ai j is the traffic intensity
between buildings i and j. The objective is to minimize the total weekly walking
distance between the buildings.

In addition to facility location, QAPs appear in applications such as layout prob-
lems, backboard wiring, computer manufacturing, scheduling, process communica-
tions and turbine balancing. In the field of ergonomics, Burkard and Offermann
[Bur1977a] showed that QAPs can be applied to typewriter keyboard design. The
problem is to arrange the keys on a keyboard such as to minimize the time needed
to write some text. Let the set of integers N = {1, 2,. . . , n} denote the set of sym-
bols to be arranged. Then ai jdenotes the frequency of the appearance of the pair of
symbols i and j. The entries of the distance matrix bkl are the times needed to press
the key in position l after pressing the key in position k. An optimal solution for
this QAP minimizes the average time for writing a text. A similar application related
to an ergonomic design is the development of control boards in order to minimize
eye fatigue [McC1970]. Further applications concern the ranking of archeological
data [Kra1978], the ranking of a team in a relay race [Hef1977], scheduling parallel
production lines [Geo1976].

1.3 Complexity of Quadratic Assignment Problems
In contrast to linear assignment problems, quadratic assignment problems re-

main among the hardest combinatorial optimization problems. The inherent diffi-
culty for solving QAPs is reflected by their computational complexity. Sahni and
Gonzalez [Sah1976] showed that QAP is NP-hard and that even finding an approx-
imate solution within some constant factor from the optimum value cannot be done
in polynomial time. These results hold even for Koopmans-Beckmann QAPs with
coefficient matrices fulfilling the triangle inequality, see Queyranne [Que1986].

1.4 Benchmark Instances
A large number of benchmark instances of QAP are available via QAPLIB, a

library for research on the QAP [Bur1997b]. Approximate algorithms are commonly
tested on these benchmark instances. QAPLIB contains currently over 100 instances
that have been used in earlier researches and in part they stem from real applications
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like hospital layout (like kra30* or els19), typewriter design (like bur26*), etc. In ad-
dition, QAPLIB also contains a number of other resources like pointers to literature,
some source codes and links for QAP related research including a list of people with
research interests in QAP. QAPLIB is very useful and certainly the first address for
QAP related information in the internet.

2 Exact Algorithms and Lower Bounds
2.1 Exact Algorithms

There are three main exact methods used to find the global optimal solution for a
given QAP: dynamic programming, cutting plane techniques, and branch and bound
procedures. Research has shown that the latter is the most successful among exact
algorithms for solving QAP. Even still, due to the overwhelming complexity of QAP,
most problems with their sizes greater than n = 30 remain nearly intractable by exact
algorithms. Since branch and bound procedures are generally the most helpful for
solving QAPs, we will discuss more on the algorithms.

In typical branch and bound (B&B) algorithms for QAP, a heuristic procedure
is used to generate a suboptimal, but suitable, initial feasible solution. Let us call
this solution the incumbent. Then at any node of the tree, some bounding methods
are used to find a "bound" on the best possible solution that can be expected from
any descendent of that node, and the "bound" is compared with the objective value
of the incumbent. If the incumbent is better than what we can ever expect from any
solution resulting from that node, then it is safe to stop branching from that node. In
other words, we can discard that part of the tree from further consideration. What is
happening is that an optimal permutation is being constructed iteratively, one element
at a time. Branch and bound techniques have evolved greatly over the past 40 years,
starting with Gilmore [Gil1962] who in 1962 solved a QAP of size n = 8, to the
solution of nug30, a QAP of size n = 30 in 2000 by Anstreicher, et al. [Ans2000].

2.2 Lower Bounds
Since QAPs are NP-hard, good lower bounds are of eminent importance for

solving these problems by implicit enumeration procedures like branch and bound.
A good bound is required that it is not too hard to compute, that it can easily be eval-
uated for subsets of the problem which occur after some branching and, finally, that it
is tight. Although a lot of efforts have been done to derive tight and computationally
efficient lower bounds, such bounds have not been found yet.

Until recently virtually most successful B&B algorithms for QAP were based on
the Gilmore-Lawler lower bound (GLB) or closely related bounds (see for example
[Brü1998, Mar1999]). Besides GLB, there are quite a lot of other bounds for QAPs,
which include, Eigenvalue bounds [Ren1992], LP (linear programming) and dual–LP
bounds [Ada1994, Res1995], Quadratic programming bounds [Ans2001], Polyhedral
bounds [Jün2001, Kai2000], Semidefinite programming bounds (SDP) [Sot2002].

When comparing bounds for QAP the most important issues are the strength of a
bound and the computational expense required to compute it. GLB can be calculated
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routinely for all instances of QAPLIB. Eigenvalue bounds can also be computed
efficiently for all symmetric instances, but its computation time is (by a constant
factor) higher than GLB’s. LP and SDP produce in general very strong bounds,
but the computational effort outgrows the computation times for the other bounds.
Currently, these bounds can not be considered efficient for problems of sizes larger
than, say, n = 30.

3 Heuristics
The extreme difficulty of QAP has made it an ideal problem for the develop-

ment of heuristic search methods. Local searches, simulated annealing, tabu search,
genetic algorithms, GRASP (Greedy Randomized Adaptive Search Procedure), and
other specialized methods have all been applied to QAP. The performance of different
heuristics tends to vary with certain problem characteristics [Tat1995].

3.1 Local Search
A local search starts from some initial assignment and repeatedly tries to im-

prove the current assignment by local changes. If in the neighborhood of the current
assignment a better assignment is found, it replaces the current assignment and the
local search continues.

In the QAP case, the neighborhood of a permutation J is typically defined by
the set of permutations which can be obtained by exchanging two facilities. The
simplest local search algorithm based on the above described neighborhood is an
iterative improvement, which is referred to as 2-opt.

3.2 Simulated Annealing Methods
Simulated Annealing (SA) is one of the first available meta-heuristics. There-

fore it is not astonishing that it was also the first one to be applied to QAP [Bur1984].
Following this implementation, some few others were proposed and currently the
one due to Conolly [Con1990] appears to be the best in performing. Thonemann
and Bölte [Tho1994] have proposed an improved SA algorithm for the QAP. A
meta-heuristic closely related to SA, was also applied to QAP by Nissen and Paul
[Nis1995].

3.3 Tabu Search
One of tabu search applications to QAP was due to Skorin-Kapov [Sko990], but

probably the best known tabu search algorithm for QAP is the robust tabu search
(RoTS) algorithm of Taillard [Tai1991]. This algorithm is based on the 2-opt best-
improvement local search algorithm. As tabu attributes, the algorithm uses assign-
ment of facilities to specific objects, that is, a tabu attribute t(i, j) refers to the fact
that it is forbidden to assign facility i to location j.

3.4 Genetic Algorithms
Genetic algorithms also receive their name from an intuitive explanation of the

manner in which they behave. This explanation is based on Darwin’s theory of nat-
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ural selection. Genetic algorithms store a set of solutions and then work to replace
these solutions with better ones based on some fitness criterion, usually the objective
function value.

Conventional genetic algorithms did not find the best known solution for the
Nugent’s problems of sizes 20 and 30. For larger problems of size up to 100, they
seldom really compete with tabu search procedures. In 2000, Ahuja, Orlin and Ti-
wari [Ahu2000] obtained very promising results on large scale QAPs in QAPLIB
by applying a version of GA called a greedy genetic algorithm. Recently, Drezner
[Dre2003] designed a new GA with a problem-specific crossover rule and a tabu
search, and obtained even better results than those obtained by Ahuja et al. This new
genetic algorithm is currently one of the best heuristics to solve QAPs.

3.5 Greedy Randomized Adaptive Search Procedure (GRASP)
GRASP is a relatively new heuristic used to solve combinatorial optimization

problems. GRASP was first applied to QAP in 1994 by Li, Pardalos, and Resende
[Li1994]. They applied GRASP to 88 QAP instances, found the best known solution
in almost every case.

3.6 Other Meta-heuristics for QAP
There are a number of applications of other heuristics to QAP. These heuristics

include ant systems [Gam1999], iterated local search [Stü1999], and other special-
ized methods.

Today it is widely agreed that the performance of metaheuristics depends strongly
on the shape of the underlying search space. Central to the search space analysis of
combinatorial optimization problems is the notion of fitness landscape [Sta1995]. In-
tuitively, the fitness landscape can be imagined as a mountainous region with hills,
craters, and valleys. The performance of metaheuristics strongly depends on the
ruggedness of the landscape, the distribution of the valleys, craters and the local min-
ima in the search space, and the overall number of the local minima. While the local
properties have a large impact on the effectiveness of a local search algorithm, the
global structure can be exploited by a population-based search.

4 A New Hybrid Genetic Algorithm
In order to test the solvability of QAPs, we propose a new hybrid genetic algo-

rithm, which combines a new selection scheme and a descent local search algorithm.
The instances in QAPLIB are tried.

4.1 The Algorithm
In our GA, the representation scheme is not much different from other GAs .

We use an array to represent the solution, as shown in Figure 1.
The uniform crossover scheme is used in our GA. In every generation, all the

individuals in the population will be applied by the crossover operator. For every
pair of randomly selected parents, a small proportion of randomly selected genes are
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Figure 1: Representation scheme of the genetic algorithm

Figure 2: Crossover scheme in the GA

exchanged. The crossover process is illustrated in Figure 2. Individuals A and B
produce C and D after applying the crossover. We define A as the direct parent of C,
and B as the direct parent of D.

The main difference between our GA and other GAs is the selection scheme:
in every generation, after crossover, every child will compare with its direct parent
only, and the worst ones will be abandoned. This process is called the intra-kindred
selection. And the culling process will be applied only once in every certain amount
of generations. This culling process is called the inter-kindred selection, and is done
by replacing a certain proportion of the individuals with the worst fitness values by
those with the best fitness values. In this way, every individual is allowed to have
certain time to evolve, and the potential schemata in every individual can be exploited
before it is removed out of the population.

To help improve the evolution of all the individuals, a post-crossover heuristic
is applied to the newborn offspring. The combined heuristic used in our GA is the
descent local search heuristic, which is defined as follows:

Step 1. Examine the change in the fitness value for all pairwise exchanges of
genes.

Step 2. The best improved exchange is executed and go back to Step 1 again.
Step 3. If no further improving exchange is found, the heuristic terminates.
The framework of the proposed algorithm is described as follows:
begin

generate an initial population randomly;

A Solution Method for the Quadratic Assignment Problem (QAP) 111



repeat
in every generation, do

apply the uniform crossover to each pair of individuals to generate off-
spring;

apply the descent local search on every child;
compare every child with its direct parent and remove the worse one;

in every Tc generations, do
culling;

until certain stopping criterion is met.
end;
The inter-kindred selection period, defined by the number of generations or Tc,

is important. If Tc is too small, the chance of premature convergence is high. On the
other hand, if Tc is too large, the computation effort will be great.

4.2 Computational Experiments
In this section, our genetic algorithm was tested on all instances with 30 ≤

n ≤ 100 in QAPLIB, most of which still can not be solved to optimality. The
results were compared with the results obtained by Ahuja et al. [Ahu2000], and by
Drezner [Dre2003].

The population size in our GA was set to 100. The inter-kindred selection period
Tc was set to be equal to the problem size n. The removal rate of the inter-kindred
selection was 20%. The crossover rate was set to be 0.2, which means in every
crossover process, two parents exchanged 20% of their alleles, which were selected
randomly. And the algorithm was set to run until there was no improvement during
Tc generations.

The program was coded in Microsoft Visual C++ 6.0, and ran on a desktop com-
puter with Pentium III 866 CPU and 256 RAM, which was similar to the computer
used by Ahuja et al. Ahuja et al. ran the algorithm only once for each problem.
Drezner ran his algorithm 200 times for each problem and we ran our GA 20 times
for each problem. And the results shown in Table 1 are the averages. The numeric
digits in a problem name state the problem size. The percentage deviations from the
best known solutions are given in the “Gap” columns.

Note: *: Number of times out of 20 runs that the best known solutions were
obtained.

Gap (%): Percentage deviations over the best known solutions
For all these 44 instances, our GA found the best known solution at least once in

20 runs. It can be found that our GA performed much better than the greedy genetic
algorithm designed by Ahuja et al. (2000), in terms of both objective value and
computation time. And our GA performed as good as the genetic algorithm designed
by Drezner (2003) when the problem size is not so large. But Drezner’s algorithm
seems to perform slightly better when the problem size is larger than 50. The main
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Table 1: Comparison between the our results and the results by Ahuja et al. (2000)
and Drezner (2003)

problem
Our GA Ahuja et al (2000) Drezner (2003)

* gap(%) time(min) gap(%) time (min) gap(%) time (min)
esc32a 20 0 0.37 0 6.36 0 0.35
esc32b 20 0 0.24 0 6.67 0 0.30
esc32c 20 0 0.20 0 6.49 0 0.27
esc32d 20 0 0.15 0 5.88 0 0.28
esc32e 20 0 0.23 0 6.16 / /
esc32f 20 0 0.17 0 6.14 / /
esc32g 20 0 0.33 0 6.18 / /
esc32h 20 0 0.26 0 5.82 0 0.29
esc64a 20 0 4.13 0 43.85 / /
kra30a 20 0 0.29 0 5.02 0 0.33
kra30b 20 0 0.34 0 5.51 0 0.33
lipa30a 20 0 0.16 0 5.74 / /
lipa30b 20 0 0.16 0 5.62 / /
lipa40a 20 0 1.02 0.960 17.03 / /
lipa40b 20 0 0.90 0 17.10 / /
lipa50a 20 0 3.31 0.950 24.77 / /
lipa50b 20 0 2.98 0 25.14 / /
lipa60a 20 0 10.35 0.770 50.95 / /
lipa60b 20 0 9.97 0 50.79 / /
lipa70a 6 0.127 30.08 0.710 102.47 / /
lipa70b 20 0 28.23 0 102.05 / /
lipa80a 2 0.242 47.82 0.610 158.55 / /
lipa80b 20 0 45.25 0 158.31 / /
lipa90a 1 0.187 61.88 0.580 205.97 / /
lipa90b 20 0 60.08 0 205.32 / /
nug30 20 0 0.36 0.070 5.9033 0 0.37
sko42 20 0 1.57 0.250 16.77 0 1.15
sko49 10 0.038 3.78 0.210 20.87 0.009 2.13
sko56 20 0 7.36 0.020 49.6 0.001 3.24
sko64 20 0 12.11 0.220 63.14 0 5.85
sko72 3 0.042 35.39 0.290 84.63 0.014 8.36
sko81 2 0.067 57.28 0.200 182.74 0.014 13.30
sko90 1 0.073 102.50 0.270 211.63 0.011 22.35
sko100a 2 0.051 174.13 0.210 276.80 0.018 33.55
sko100b 7 0.039 165.50 0.140 245.49 0.011 34.05
sko100c 16 0.015 158.54 0.200 338.57 0.003 33.80
sko100d 11 0.022 184.41 0.170 338.37 0.049 33.90

Continued.
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Table 1: Comparison between the our results and the results by Ahuja et al. (2000)
and Drezner (2003) (Continued)

problem
Our GA Ahuja et al (2000) Drezner (2003)

* gap(%) time(min) gap(%) time (min) gap(%) time (min)
sko100e 10 0.030 167.31 0.240 352.12 0.002 30.67
sko100f 5 0.017 170.88 0.290 357.98 0.032 35.74
ste36a 18 0.025 0.84 0.270 11.827 0.005 0.55
tho30 20 0 0.31 0 6.59 0 0.35
tho40 9 0.041 1.98 0.32 15.97 0.010 0.98
wil50 4 0.028 5.06 0.070 35.25 0.002 1.99
wil100 2 0.041 176.28 0.200 342.40 0.002 33.11

reason is that Drezner’s algorithm incorporated a highly efficient tabu search and
a crossover method specifically designed for QAP. In contrast, there is no specific
crossover operator in our GA.

At present, most of the best solutions for the large instances in QAPLIB are
obtained through meta-heuristics. The above test results indicate that even without
problem-specific operators, some meta-heuristics like the hybrid genetic algorithm
can perform very well in solving large QAP instances.

5 Concluding Remarks
For a long time, the extreme difficulty of QAP has made it an ideal problem

for the development of heuristic search methods. However, some large problems
are still challenging. On the other hand, new exact algorithms and novel computing
structures developed in recent years make it possible to solve a number of long-open
QAPs to optimality, including those posed by Steinberg (1961), Nugent et al. (1968)
and Krarup (1972). For this reason, there has been a large amount of research on both
fields of exact algorithms and heuristics.

Our opinions on advances and recent trends in the development of exact algo-
rithms are:

• Development of tight and computationally efficient bounding procedures.
• Development of new strong branching methods for B&B algorithms.
• Utilization of distributed computation which uses multiple machines interfaced

with some form of communication network.

Advances and recent trends in the development of heuristics are:

• Development of new hybrid heuristics which preferably exploit the special
structure of QAP.

• Fitness landscape analysis of QAP that may help the design or parameter tuning
of heuristics.
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QAP still remains very challenging. More researches along these two lines are still
needed. Further advances and development in these areas will certainly lead to the
solution of even more difficult instances in the near future.
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