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Abstract We consider N-stage serial production/distribution systems with stationary demand at
the most downstream stage. First, we study classical Clark-Scarf model with both average cost and
discounted cost criteria. The optimal echelon base-stock levels are obtained in terms of only prob-
abilistic distributions of leadtime demand. This analysis yields a novel approach for developing
bounds and simple heuristics for optimal echelon base-stock polices. In addition to deriving known
bounds, we develop several new upper bounds for both average cost and discounted cost models.
Second and more important, we extend this idea to a more general model with two transportation
modes between stages: the regular and expedited shippings (Lawson and Porteus (2000)). The
optimal inventory policy for this system is known to be echelon base-stock policy, which can be
computed through minimizing 2N nested convex functions recursively. We again develop simple
newsvendor type of lower and upper bounds for the optimal control parameters, as well as a simple
near optimal heuristic. Extensive numerical results show that the heuristics for both models per-
form well. The bounds and heuristic enhance the accessibility and implementability of the optimal
policies in supply chains with single and dual transportation modes.

1 Introduction
We consider serial periodic-review production/distribution systems with N stages.

Stochastic customer demand arises at stage 1, stage 1 replenishes from stage 2, stage
2 replenishes from stage 3, etc., and stage N replenishes its inventory from an outside
supplier with ample stock. The random demands in different periods are independent
and identically distributed. When demand in a period exceeds the stock level at stage
1, the excess is backlogged.

In the classcial Clark and Scarf (1960) serial system, there is only one trans-
portation mode between each stage. Lawson and Porteus (2000) (see also Muhar-
remoglu and Tsitsilkis (2003)) consider a system with two modes of transportation
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between any two adjacent stages, referred to as regular shipping and expedited ship-
ping, with transportation leadtimes being 1 and 0 respectively. The expedited ship-
ping cost is higher than the regular shipping cost. The 0 leadtime allows one to ship a
product from any stage to stage 1 in no time, if needed, by using expedited shipping
between stages. There is a linear holding cost at each stage, and a linear shortage
cost at stage 1 when shortage occurs, and the problem is to minimize the total dis-
counted cost over the planning horizon. They shown that echelon base-stock policies
are optimal.

In this chapter, we start from the classical Clark-Scarf system by further study-
ing the recursive computation of the echelon base-stock levels, for both average cost
and discounted total cost criteria. The optimal echelon base-stock levels are obtained
in terms of only probability distributions of leadtime demand. This analysis yields
a novel approach for developing bounds and simple heuristics for optimal echelon
base-stock polices. To illustrate, we show how the bounds of Zipkin (2000) and
Shang and Song (2003) can be obtained from these equations. The explicit equations
allow us to obtain new bounds for the optimal echelon base-stock levels for serial
inventory systems with both average cost and discounted cost criteria in a unified
manner.

Next, we study the infinite horizon problem of the model that includes two trans-
portation modes with the objective of minimizing the total discounted cost. It is
known that the optimal stationary policies of this system can be obtained by solv-
ing 2N nested convex optimization problems recursively. Despite its simple form,
however, it is not easy to see the key determinants of the optimal policy and mini-
mum cost from the recursion. Therefore, in this chapter we aim at developing simple
newsvendor bounds and heuristics for the optimal inventory control policies that can
shed light on the effect of system parameters.

Multi-echelon inventory system is a fundamental model for supply chain man-
agement and has been studied extensively since the seminal work of Clark and Scarf
(1960), who show that an echelon base-stock policy is optimal for a finite horizon
problem. Federgruen and Zipkin (1984) extend this result to infinite horizon and
prove the optimality of a stationary order-up-to level policy. Chen and Zheng (1994)
present a simple lower-bound approach to prove the optimality of echelon base-stock
policy for the average cost criterion, and Chen (2000) further extends the result to
the batch ordering case. See Gallego and Zipkin (1999) for a detailed summary and
a review of the relevant literature.

There has been a number of papers in the literature on constructing simple
bounds of cost or optimal policies for inventory systems. Zheng (1992) studies
stochastic (Q,R) model and presents bounds for optimal ordering quantity for sin-
gle stage problem, and Gallego (1998) develops closed form distribution-free bounds
for (Q,R) policies. Glasserman (1999) establishes bounds and asymptotics for per-
formance measures for single as well as serial capacitated system. Hopp et al. (1997)
suggest an easily implementable heuristic for one-warehouse multiple-retailer sys-
tems, which is a simple closed form solution of the system control parameters. Gal-
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lego and Zipkin (1999) discuss the issue of stock positioning and construct three
heuristics to calculate the system average cost. Zipkin (2000) introduces lower bound
for a two-stage system by restricting the possibility of holding inventory at the up-
per stream stage. Dong and Lee (2003) develop lower bounds for optimal policies
of serial system with discounted cost criterion, while Shang and Song (2003) obtain
simple newsvendor type of bounds and develop simple heuristics for serial systems
with average cost criterion, using a different approach than that of Dong and Lee.
Chao and Zhou (2004) present another approach for constructing bounds and heuris-
tics for serial systems, and they obtain a series of upper and lower bounds for optimal
base-stock levels. Another related work on bounds and heuristics for serial systems
is Gallego and Ozalp (2004). In all these references only one transportation mode is
considered between stages.

Another stream of research that closely relates to ours is on optimality of control
policies for single- and multi-stage inventory models with single and multiple supply
modes.

The earliest work on inventory models with two delivery modes can be traced
back to Barankin (1961), who studies a single period problem. Daniel (1963) is
regarded as the first work on a multi-period single-stage model with one regular sup-
plier and one emergency supplier, with leadtimes being 1 and 0 respectively. Fukuda
(1964) extends the work of Daniel to the case where the leadtimes of the two sup-
ply modes are L and L + 1 respectively. Whittmore and Saunders (1977) consider
the dual-supplier problem with arbitrary length of leadtimes and demonstrate that the
optimal control policy is very complicated and state-dependent if the difference in
leadtimes is greater than 1. Because of the complexity of the optimal policy, Scheller-
Wolf et al. (2003) and Veeraraghavan and Scheller-Wolf (2004) focus on evaluation
and optimization of two classes of policies, i.e., “single index" and “dual index" poli-
cies. These studies only focus on single stage inventory system. Other related work
on single-stage inventory systems with multiple transportation modes includes Feng
et al. (2003) and Feng et al. (2004).

For multi-echelon serial systems with the option of expedited shipping between
stages, Lawson and Porteus (2000) consider serial systems with dual transportation
modes. Under the assumptions that the leadtime difference of regular and expedited
supply is one period for each stage and additive linear shipping cost, they obtain
the form of optimal inventory control policy. The control parameters of each echelon
consist of two numbers, one for regular shipping and the other for expedited shipping.
Muharremoglu and Tsitsiklis (2003) extend Lawson and Porteus’ second assumption
by introducing “supermodular" shipping cost structure and characterize the optimal
policy as extended echelon base-stock type.

Supply chain models with multiple transportation modes have gained momen-
tum in recent years due to the increasing popularity of outsourcing, see for example
McMillan (1990), Venkatesan (1992), and van Mieghem (1999). Cost and leadtime
are two important measures of the suppliers for outsourcing. A supplier who provides
shorter leadtime usually has higher price. To balance this tradeoff, companies often

Newsvendor Bounds and Heuristics for Optimal Policy 3



adopt multiple sourcing strategies by sharing its business with multiple suppliers.
Consequently, companies need to strategically determine the ordering quantity from
each supplier based on its inventory status and demand forecast in order to minimize
cost. The strategic importance of utilizing multiple suppliers with long and short lead
time was first recognized by the US fashion industry. Many firms in this sector have
moved their major manufacturing facilities offshore to take advantage of the lower
production cost. However, some still prefer to maintain costly domestic facilities
so that they can better respond to changes in market demand. The combination of
‘quick-response, or short leadtime’ suppliers with ‘low cost, long leadtime’ suppliers
has been viewed by many as an appropriate strategy to meet fickle customer demand.
Some references in this area are Fisher, et al. (1994), Fisher and Raman (1996),
Eppen and Iyer (1997), Donohue (2000), and Haksoz and Seshadri (2004).

There are two main technical differences between the systems with regular and
expedited shippings and the classical serial inventory system with one transportation
mode. First, the optimal inventory replenishment policy is no longer myopic but in-
stead it is one period ahead, which increases not only the complexity of computation
of the optimal base-stock levels but also the difficulty of developing bounds for the
optimal echelon base-stock levels. Second, there are two types of induced penalty
cost functions, one is between stages and the other is within stage. In this chapter we
develop several lower and upper newsvendor simple bounds for the optimal echelon
base-stock levels for the multi-echelon system. Based on these bounds we develop a
simple heuristic. Numerical studies show that the heuristic performs very well. To
simplify the exposition and without loss of generality, we assume leadtime for regular
and expedited supply is 1 and 0, respectively. If leadtime between stages is not 1, say
L, then it can be covered by inserting L−1 stages each representing work in progress
(WIP). In the resulting model there will be L options to reduce the shipping time,
to ` = 0,1, . . . ,L−1 time units respectively, and the costs for these different options
satisfy additivity structure. See Lawson and Porteus (2000) and Muharremoglu and
Tsitsilkis (2003) for more discussion.

The rest of the chapter is organized as follows. In Section 2, we present the prob-
abilistic solution, bounds and heuristic for the optimal policy of Clark-Scarf model
with average and discounted cost criteria. In Section 3, we develop the bounds and
heuristic for the serial system with regular and expedited shippings. We conclude the
chapter with some discussion in Section 4. All of the technical proofs are refered to
Chao and Zhou (2004) and Zhou and Chao (2006).

Throughout the chapter, we use “expedited order" and “expedited supply" in-
terchangeably. Furthermore, we use “increasing" and “decreasing" in a non-strict
sense, i.e., they represent “non-decreasing" and “non-increasing" respectively. For
any real numbers a and b, a∧b = min{a,b}, a∨b = max{a,b}, a+ = max{a,0} and
a− = max{−a,0}.
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2 Classical Serial System
In this section, we study the classical serial system with both average cost and

discounted cost.

2.1 Probabilistic Solution
Consider a continuous-review single item serial inventory system with N stages.

The demand process is compound Poisson with continuous demand sizes. Demand
only occurs at stage 1. Stage 1 places order from stage 2, stage 2 orders from stage
3, etc., and stage N orders from the outside with ample supply. There are constant
transportation time between stages, and unsatisfied demand is fully backlogged at
stage 1.

The following notation will be used for stage i = 1,2, . . . ,N:
Li = the leadtime between stage i to stage i+1,
Di = the leadtime demand during Li units of leadtime,
Fi(.) = the distribution function of Di,
yi = echelon inventory position at stage i after ordering,
hi = echelon i inventory holding cost rate,
Hi = installation i inventory holding cost rate, i.e., Hi = ∑N

j=i h j,
IPi = echelon inventory position of stage i,
b = backorder cost rate at stage 1.
For convenience we let Li, j represent the leadtime between stage i and stage

j+1, i.e., Li, j = ∑ j
k=i Lk, let Di, j represent the demand during leadtime Li, j, i.e., Di, j =

∑ j
k=i Dk, let Fi, j be the distribution function of Di, j, and F̄i, j = 1−Fi, j. Clearly, Li,i =

Li,Di,i = Di,Fi,i = Fi and they will be used interchangeably. Let Li, j = 0,Di, j = 0 for
j < i.

Echelon base-stock policy is known to be optimal for this system with both
average cost and discounted total cost criteria (see Federgruen and Zipkin (1984) and
Chen and Zheng (1994)).

We first consider the case of minimizing total discounted cost with discount
factor α , the algorithm for computing the optimal base-stock levels is: Let G1

0(x) =
(H1 +b)x−. For j = 1,2, . . . ,N, compute

Gi(x) =αLi hiE(x−Di)+αLi E[Gi
i−1(x−Di)], (1)

s∗i =argminGi(x), (2)

Gi+1
i (x) =Gi(x∧ s∗i ). (3)

To the best of our knowledge, no recursive equations have ever been reported in
the literature for serial inventory model with discounted cost criterion. The following
result gives the optimal base-stock levels for discounted cost criterion in terms of the
leadtime demand distributions.
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Proposition 1. Assuming s∗1, . . . ,s
∗
i−1, the optimal echelon base-stock level for stage

i, s∗i , for i = 1,2, . . . ,N, is the solution of

hi +
i−1

∑
j=1

αL j,i−1 h jP(D j+1,i ≥ y− s∗j ,D j+2,i ≥ y− s∗j+1, . . . ,Di,i ≥ y− s∗i−1)

−αL1,i−1(H1 +b)P(D1,i ≥ y,D2,i ≥ y− s∗1, . . . ,Di,i ≥ y− s∗i−1) = 0. (4)

The left hand side of the equation is increasing in y.

Proposition 1 presents explicit form dependency of the optimal inventory control
strategies on its determinants. In the next section we will see how these results can be
applied to develop simple upper and lower bounds for the optimal control parameters.

For the average cost case, it turns out that the probabilistic solution for optimal
echelon base-stock levels is also given by (4) except that we need to set α = 1. We
remark that the probabilistic solution for the average cost case is related to van Hou-
tum, et al. (1996) and van Houtum and Zijm (1991), who also study serial inventory
model with average cost. However, equation (4) with α = 1 is more succinct that is
amenable for developing bounds and heuristics as we will demonstrate in the next
section.

2.2 Bounds
The explicit results of optimal echelon base-stock levels given in the last section

can be used to derive simple bounds for optimal control parameters. The idea is
simple: If we approximate the left hand side of (4) by another function which yields
a simple solution, then the solution serves as an approximation for s∗i . Furthermore,
since the left hand side of (4) is increasing in y, if we approximate the left hand side
by a smaller increasing function, say ḡ(y), then ḡ(y) = 0 will give an upper bound for
s∗i ; while if we approximate the left hand side of (4) by a larger, increasing function
g(y), then g(y) = 0 will give a lower bound for s∗i .

We will first present the lower and upper bounds for the serial system with dis-
counted cost criterion.

Proposition 2. An upper bound for the optimal echelon base-stock level of serial
inventory model with total discounted cost criterion is, if

αL1,i−1(H1 +b)−
i−1

∑
j=1

αL j,i−1 h j > hi, (5)

su
i = F̄−1

1,i

(
hi

αL1,i−1(H1 +b)−∑i−1
j=1 αL j,i−1 h j

)
, i = 1, . . . ,N, (6)

and otherwise
su

i = 0, i = 1, . . . ,N.
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Another upper bound for the discounted cost case is, if (5) is satisfied then

ŝu
i = s∗i + F̄−1

i

(
hi

αL1,i−1(H1 +b)−∑i−1
j=1 αL j,i−1 h j

)
, i = 1, . . . ,N, (7)

and (5) is not satisfied then ŝu
i = 0. Inductively we obtain upper bound,

s̃u
i =

i

∑
j=1

F̄−1
j

(
h j

αL1, j−1(H1 +b)−∑ j−1
k=1 αLk, j−1 hk

)
, i = 1, . . . ,N,

where F̄−1
j (x), j = 1, . . . , i, is understood as 0 if either x ≥ 1 or x ≤ 0. And a lower

bound for the optimal echelon base-stock level is

sl
i = F̄−1

1,i

(
∑i

j=1 α−L1, j−1 h j

H1 +b

)
, i = 1, . . . ,N. (8)

We note that the lower bound for the discounted cost case has been obtained by
Dong and Lee (2003). The upper bound is, to the best of our knowledge, new.

Remark 1. It can be easily demonstrated by some examples that the two upper
bounds, i.e. (6) and (7), do not have a dominating relationship, hence anyone can
be a better bound, depending on the instance.

Remark 2. It can be seen from the proof of Proposition 2 (see Chao and Zhou (2004))
that, for any 1≤ k ≤ i, we have

hi +
i−1

∑
j=1

αL j,i−1 h jP(D j+1,i ≥ y− s∗j ,D j+2,i ≥ y− s∗j+1, . . . ,Di ≥ y− s∗i−1)

−αL1,i−1(H1 +b)P(D1,i ≥ y,D2,i ≥ y− s∗1, . . . ,Di ≥ y− s∗i−1)

≥ hi−
(

αL1,i−1(H1 +b)−
i−1

∑
j=1

αL j,i−1 h j

)
P(D1,k ≥ y− s∗k−1).

Therefore we have a sequence of upper bounds for s∗i : For k = 1, . . . , i,

ŝu
i = s∗k−1 + F̄−1

1,k

(
hi

αL1,i−1(H1 +b)−∑i−1
j=1 αL j,i−1 h j

)
, i = 1, . . . ,N,

where s∗0 is understood as 0.

For the average cost case, we can obtain similar results by letting α = 1 in the
proceeding analysis and so we only summarize the results and omit the proof. Propo-
sition 3 has been obtained by Shang and Song (2003) using a completely different
method. The second result, Proposition 4, is new.
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Proposition 3. An upper bound for the optimal echelon base-stock level of serial
inventory model with average cost criterion is

su
i = F̄−1

1,i

(
hi

∑N
j=i h j +b

)
, i = 1, . . . ,N, (9)

and a lower bound for the optimal echelon base-stock level is

sl
i = F̄−1

1,i

(
∑i

j=1 h j

∑N
j=1 h j +b

)
, i = 1, . . . ,N. (10)

Proposition 4. An upper bound for s∗i is

ŝu
i = s∗i−1 + F̄−1

i

(
hi

∑N
j=i h j +b

)
, i = 1, . . . ,N. (11)

Inductively we obtain another simple upper bound for s∗i

s̃u
i =

i

∑
j=1

F̄−1
j

(
h j

∑N
k= j hk +b

)
, i = 1, . . . ,N. (12)

Remark 3. One might also wish to obtain a lower bound for s∗i in the form of s∗i−1
plus a nonnegative number. We argue that this is not possible. It is known that the
solution obtained from the computational algorithm (1), (2) and (3) may not satisfy
relationship s∗1 ≤ s∗2 ≤ ·· · ≤ s∗N , see for example Gallego and Ozer (2004). Hence if
s∗i < s∗i−1 then s∗i−1 is already an upper bound for s∗i . Thus it is not possible to give a
lower bound of s∗i in the form s∗i−1 plus a nonnegative number. It is also well-known
that, in that case, we can define s̄∗i = min{s∗i ,s

∗
i+1, . . . ,s

∗
N} to give an optimal policy

that satisfies s̄∗1 ≤ s̄∗2 ≤ ·· · ≤ s̄∗N .

Based on these bounds, several heuristics can be constructed for the optimal
base-stock levels, using the approaches of Shang and Song (2003) and Gallego and
Ozer (2004). For example, we can just simply use average of sl

i and su
i ,

sh
i =

su
i + sl

i

2

to approximate s∗i . And su
i is the smaller one of the two upper bounds, i.e., min{su

i , s̃
u
i }.

If the average is not an integer, we can either round up or round down the value to
obtain the nearest integer value for sh

i . Our numerical studies show that the heuristic
works very well. Extensive numerical results for bounds and heuristics are reported
in Zhou (2006).

3 Serial System with Regular and Expedited Shppings
In this section, we first derive the probabilistic solution for the optimal base-

stock leverls , then develop lower and upper bounds as well as a simple heuristic for
the serial system with regular and expedited shippings.
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3.1 Probabilistic Solution
Consider an infinite-horizon periodic-review serial inventory system with dual

transportation modes. There are N stages, denoted by 1,2, . . . ,N, stage i orders from
stage i + 1 (i = 1, . . . ,N− 1), and stage N orders from an external supplier with un-
limited stock. There are two ordering decisions at each stage: Expedited order and
regular order. Demand occurs only at stage 1, and excess demand is fully backlogged
at stage 1. The regular order has leadtime 1, and the expedited order has leadtime
0. The demands in different periods are i.i.d. random variables. At the beginning of
each period, the firm decides the ordering quantities for two supply options at each
stage. The objective is to minimize the total discounted cost over an infinite planning
horizon.

The events sequence is as follows: First at the beginning of the period, each
stage receives the regular order placed in the previous period; second, expedited order
is placed from its upstream stage which is delivered immediately; third, regular order
is placed from the upstream which will be delivered at the beginning of next period;
finally, demand is realized at stage 1 and all costs are calculated.

For i = 1,2, . . . ,N, define:
xi = initial echelon inventory level at stage i;
yE

i = echelon inventory level at stage i after placing the expedited order;
yR

i = echelon inventory position at stage i after placing the regular order;
c̄E

i = unit expedited shipping cost from stage i+1 to stage i;
c̄R

i = unit regular shipping cost from stage i+1 to stage i, i.e., c̄R
i < c̄E

i ;
hi = unit echelon i inventory holding cost per period;
Hi = unit installation i inventory holding cost per period, s.t., Hi = ∑N

j=i h j.
b = unit demand backlog cost per period;
D j = demand in period j, j = 1,2, . . .;
D = generic one-period demand;
F(.) = cumulative distribution function of D;
F̄(.) = 1−F(.);
D( j) = j-period demand, j = 1,2, . . .;
Fj(.) = cumulative distribution function of D( j), j = 1,2, . . .;
F̄j(.) = 1−Fj(.), j = 1,2, . . .;
α = the discount factor, i.e., 0 < α ≤ 1.
As explained in Lawson and Porteus (2000), xi denotes the sum of on-hand stock

from stages 1 to i, less the backlog at stage 1; yE
i is the echelon stock level of stage

i after all expediting at stage i and upstream stages, but before expediting into stage
stage i− 1, has taken place. Similarly, yR

i is the echelon inventory position of stage
i after both expedited order and regular order are placed from stage i + 1. Clearly,
yR

i − yE
i ≥ 0 represents the number of regular units placed into the regular flow from

stage i+1, while yE
i −xi ≥ 0 represents the number of units expedited to stage i from
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stage i+1. Since a product can be expedited to stage i in no time through expedition
between stages, yE

i − xi has no upper limit. Also, note that D(1) = D and F1 = F .
The state of the system at the beginning of a period, before any decision is made, is
x = (x1, . . . ,xN).

The following result is easily verified, and it is originally due to Karush (1958).

Lemma 5. Let g(x) be a convex function with a minimizer s, then for any x≤ y,

min
x≤z≤y

g(z) = g(x∨ s)+g(y∧ s)−g(s).

Note that g(x∨ s) is an increasing convex function of x while g(y∧ s) is a de-
creasing convex function of y.

Let f (x) be the minimum expected total discounted cost given initial echelon
inventory level x = (x1,x2, . . . ,xN). Let L1(x) = h1E[x−D] + (H1 + b)E[(x−D)−]
and Li(x) = hiE[x−D] for i > 1. The optimality equation is

f (x) = min
xi≤yE

i ≤yR
i ≤yE

i+1

{
N

∑
i=1

(c̄E
i (yE

i − xi)+ c̄R
i (y

R
i − yE

i )+Li(yE
i ))

+αE[ f (yR−D)]

}
, (13)

where yR = (yR
1 , . . . ,y

R
N) and yR−D = (yR

1−D, . . . ,yR
N−D). For ease of exposition, we

shift the cost −c̄E
i x to the previous period and after some simple algebra, we obtain

f (x) = min
xi≤yE

i ≤yR
i ≤yE

i+1

{
N

∑
i=1

((c̄E
i − c̄R

i )y
E
i +αcE

i E[D]+ (c̄R
i −α c̄E

i )yR
i

+hiE[(yE
i −D)])+L1(yE

1 )+αE[ f (yR−D)]

}
.

Let cE
i = c̄E

i − c̄R
i + hi > 0 and cR

i = α c̄E
i − c̄R

i > 0, the reason for cR
i > 0 is that oth-

erwise the regular order will never be used and the model collapses to the one with
single supply mode which is not the interest of this section. We call cE

i the relative
unit expedited ordering cost and cR

i the relative unit regular ordering cost (in the rest
of the section, we may occasionally skip the “relative" for simplicity).

By suppressing the terms that do not affect the optimization, we can finally
rewrite the optimality equation as,

f (x) = min
xi≤yE

i ≤yR
i ≤yE

i+1

{
N

∑
i=1

(cE
i yE

i − cR
i yR

i )+(b+H1)E[(yE
1 −D)−]

+αE[ f (yR−D)]

}
(14)
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It can be shown that f (x) is additively convex,

f (x) =
N

∑
i=1

fi(xi), (15)

where each fi(xi) is a convex function (see Lawson and Porteus (2000)). Let GE
1 (y) =

cE
1 y + (H1 + b)E[(y−D)−], which is a convex function with minimizer sE

1 , a finite
number. Applying Lemma 1 to (14) yields f1(x1) = GE

1 (x1∨ sE
1 ). Let

G1,1(y) = GE
1 (y∧ sE

1 )−GE
1 (sE

1 )+αE[GE
1 ((y−D)∨ sE

1 )],

referred to as the induced penalty cost within the stage, and

GR
1 (y) = G1,1(y)− cR

1 y.

Let sR
1 be the minimizer of convex function GR

1 (.). Substituting (15) into (14) and
applying Lemma 1 yields,

min
x1≤yE

1≤yR
1≤yE

2

{GE
1 (yE

1 )− cR
1 yR

1 +αE[ f1(yR
1 −D)]}

=GE
1 (x1∨ sE

1 )+ min
yR

1≤yE
2

{−cR
1 yR

1 +GE
1,1(y

R
1 )}

=GE
1 (x1∨ sE

1 )+ min
yR

1≤yE
2

GR
1 (y

R
1 )

=GE
1 (x1∨ sE

1 )+GR
1 (y

E
2 ∧ sR

1 ).

Let G1,2(y) = GR
1 (y ∧ sR

1 ), also called induced penalty cost but which is between
stages, and

GE
2 (y) = cE

2 y+G1,2(y).

Let sE
2 be the minimizer of convex function GE

2 (.). This process can be continued and
we obtain, in general for i≥ 1, after GE

i is defined with minimizer sE
i , that

Gi,i(y) =GE
i (y∧ sE

i )−GE
i (sE

i )+αE[GE
i ((y−D)∨ sE

i )], (16)

GR
i (y) =Gi,i(y)− cR

i y, (17)

Gi,i+1(y) =GR
i (y∧ sR

i ), (18)

GE
i+1(y) =cE

i+1y+Gi,i+1(y). (19)

And that, for all i≥ 1,
fi(xi) = GE

i (xi∨ sE
i ).

Note that all these functions are convex, and in particular, Gi,i+1 is decreasing convex
and fi is increasing convex.

The optimal policy for this system is top-down echelon base-stock policies
(Lawson and Porteus (2000)). The top-down base-stock policy works as follows.
Starting from stage N, each stage tries to raise its echelon inventory position to the
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expedited order-up-to level sE
i and regular order-up-to level sR

i , taking upstream de-
cisions as fixed and ignoring downstream decisions. More formally, a policy with
2N base-stock levels is a top-down base-stock policy if the actual decisions can be
constructed from the base-stock levels as follows.

yR
N =sR

N ∨ xN ,

yE
i =sE

i ∨ xi∧ yR
i i = 1,2, . . . ,N,

yR
i =sR

i ∨ xi∧ yE
i+1 i = 1,2, . . . ,N−1.

Lemma 6. (1) sE
i ≤ sR

i−1, for i = 2, . . . ,N.
(2) sE

i ≤ sR
i , for i = 1, . . . ,N.

We can develop probabilistic solutions for the optimal base-stock levels sE
i and

sR
i . From equations (16)-(19), the optimal control parameters sE

i and sR
i are, respec-

tively, the solution of (GE
i (y))′ = 0 and (GR

i (y))
′ = 0. Let D1,D2, . . . be demands in

periods 1,2, . . .. For stage 1, taking derivative of GE
1 (y) with respect to y yields

cE
1 − (H1 +b)P(D1 > y) = 0,

hence the optimal expedited base-stock level for stage 1 is

sE
1 = F̄−1

(
cE

1

H1 +b

)
. (20)

Note that if cE
1 ≥H1 +b, then sE

1 =−∞ and expedited shipping is never used at stage
1. To solve for sR

1 , it follows from Lemma 6 that we only need to consider the solution
of (GR

1 (y))
′ = 0 on y≥ sE

1 . It follows from (16) that sR
1 is the solution of

− cR
1 +αcE

1 P(D2 ≤ y− sE
1 )−α(H1 +b)P(D2 ≤ y− sE

1 ,D1 +D2 > y) = 0. (21)

Some further algebraic derivations yield that sE
2 is the solution of

cE
2 − cR

1 + cE
1 1[y < sE

1 ]+αcE
1 P(D≤ y− sE

1 )− (H1 +b)P(D > y)1[y < sE
1 ]

−α(H1 +b)P(D≤ y− sE
1 ,D(2) > y) = 0,

that sR
2 is the solution of

− cR
2 +αcE

2 P(D≤ y− sE
2 )−αcR

1 (D≤ y− sE
2 ,D > y− sR

1 )

+αcE
1 P(D≤ y− sE

2 ,D > y− sR
1 ,D > y− sE

1 )

+α2cE
1 P(D≤ y− sE

2 ,D > y− sR
1 ,D(2)≤ y− sE

1 )

−α(H1 +b)P(D≤ y− sE
2 ,D > y− sE

1 ,D > y− sR
1 ,D(2) > y))

−α2(H1 +b)P(D≤ y− sE
2 ,D > y− sR

1 ,D(2)≤ y− sE
1 ,D(3) > y) = 0,

12 The Sixth International Symposium on Operations Research and Its Applications



and that sE
3 is the solution of

cE
3 − cR

2 +(cE
2 − cR

1 )1[y < sE
2 ]+ cE

1 1[y < sE
1 ,y < sE

2 ]

+αcE
1 P(D≤ y− sE

1 )1[y < sE
2 ]

+αcE
2 P(D≤ y− sE

2 )−αcR
1 (D≤ y− sE

2 ,D > y− sR
1 )

+αcE
1 P(D≤ y− sE

2 ,D > y− sR
1 ,D > y− sE

1 )

+α2cE
1 P(D≤ y− sE

2 ,D > y− sR
1 ,D(2)≤ y− sE

1 )

− (H1 +b)P(D > y)1[y < sE
1 ,y < sE

2 ]

−α(H1 +b)P(D≤ y− sE
1 ,D(2) > y)1[y < sE

2 ]

−α(H1 +b)P(D≤ y− sE
2 ,D > y− sR

1 ,D > y− sE
1 ,D(2) > y))

−α2(H1 +b)P(D≤ y− sE
2 ,D > y− sR

1 ,D(2)≤ y− sE
1 ,D(3) > y) = 0.

This process can be continued to give probability solutions for sE
i and sR

i for any i. As
can be expected, the expression becomes extremely complicated as i increases. The
detailed derivation of these equations see Zhou and Chao (2006).

The following lemma presents the dependency of optimal policy on system pa-
rameters.

Lemma 7. (1) sE
i is decreasing in cE

j for j≤ i, independent of cE
j for j > i, increasing

in cR
j for j < i, independent of cR

j for j ≥ i and increasing in b.
(2) sR

i is decreasing in cE
j for j ≤ i,independent of cE

j for j > i, increasing in cR
j

for j ≤ i, independent of cR
j for j > i and increasing b.

Thus, for each stage, if the expedition cost gets higher, then less expedition will
be used and the base-stock level for expedited order becomes lower. If the expedition
cost of any downstream stage gets higher, then less expedition will be used in that
stage and so the echelon expedited base-stock level of current stage becomes lower
as well. But if the regular shipping cost gets higher, then the regular echelon base
stock level becomes higher. The explanation for the latter is the same as that of a
single-stage infinite horizon inventory model with periodic review and one ordering
opportunity in each period, for which it is well-known that the base-stock level is
increasing in purchasing cost. As a result, if downstream stage’s regular shipping cost
becomes higher, then the downstream stage tends to order more so both the echelon
expedited and regular order-up-to levels of current stage become higher. That sR

i
is decreasing in cE

j can be explained as follows: As we can consider the expedited
manager as the downstream of the regular order manager, when the expedition cost
is higher, less expedited orders are placed and consequently, the echelon base-stock
level for regular shipping will also become lower. Finally, that both sE

i and sR
i are

increasing in b is intuitively clear: with higher shortage cost, then each stage should
keep higher (echelon) inventory to reduce shortage cost.

Lemma 8. For i = 2, . . . ,N, sE
i ≥ sE

i−1 if and only if cR
i−1 > cE

i .
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The previous results we have obtained not only show some structural properties
of the optimal base-stock levels but more importantly, they will be used in the deriva-
tion of bounds for the optimal base-stock levels and computational heuristics in the
remainder of the section.

3.2 Bounds
In this subsection, we develop several sets of newsvendor lower bounds and

upper bounds for the optimal echelon base-stock levels.
The basic ideas used in developing upper and lower bounds are as follows: The

optimal base-stock level for emergency shipping sE
i is determined by (GE

i (y))′ = 0.
Since (GE

i (y))′ is an increasing function of y, if we can find a function g such that
GE

i (y))′ ≤ g(y), then the solution of g(y) = 0 is a lower bound for sE
i . Similarly, if

we can find a function g such that GE
i (y))′ ≥ g(y), then the solution of g(y) = 0 is

an upper bound for sE
i . The same argument applies to sR

i which is determined by
(GR

i (y))
′ = 0. Moreover, the simpler and tighter the g(y) function is, the simpler and

better the resulting bound.

Theorem 9. For i = 1, . . . ,N, the lower bounds for sE
i and sR

i are, respectively,

sE1
i = max

{
F̄−1

(
∑i

j=1(c
E
j − cR

j−1)
H1 +b

)
, F̄−1

(
∑i

j=1 α i− j(cE
j − cR

j−1)
α i−1(H1 +b)

)}
, (22)

and

sR1
i = max

{
F̄−1

(
−cR

i +∑i
j=1(c

E
j − cR

j−1)
H1 +b

)
,

F̄−1

(
−cR

i +∑i
j=1 α i− j+1(cE

j − cR
j−1)

α i(H1 +b)

)}
. (23)

For notational convenience, for i = 1, . . . ,N, j = 1, . . . , i, let

Ai,i =0

Bi, j =cR
i +αA+

i, j,

Ai, j =− cE
i +Bi−1, j.

In the next two theorems, we give other sets of lower bounds for sE
i and sR

i .

Theorem 10. For i = 1,2, . . . ,N, if ∑i
j=1 α i− j(cE

j − cR
j−1)) ≤ α i−1(H1 + b), then the

lower bounds for sE
i and sR

i are,

sE2
i = max

{
F−1

k

(
Ai,i−k+1

∑i−k+1
l=1 α i−l(cE

l − cR
l−1)

)
,k = 2, . . . , i

}
, (24)
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sR2
i = max

{
F−1

k+1

(
Bi,i−k+1

∑i−k+1
l=1 α i−l+1(cE

l − cR
l−1)

)
,k = 1, . . . , i

}
. (25)

Theorem 11. For i = 2, . . . ,N

sE3
i = sE

i−1 +max

{
F−1

(
cR

i−1− cE
i

∑i−1
j=1 α i− j(cE

j − cR
j−1)

)
,F−1

(
cR

i−1− cE
i

αcE
i−1

)}
, (26)

if cR
i−1− cE

i >= 0. And i = 1, . . . ,N

sR3
i = sE

i +min

{
F−1

(
cR

i

∑i
j=1 α i− j+1(cE

j − cR
j−1)

)
,F−1

(
cR

i

αcE
i

)}
. (27)

It follows that, if the relative unit regular order cost of downstream stage is
greater than the relative unit expedited cost of the current stage, i.e., cR

i−1 > cE
i , then

the expedited order-up-to level of the current stage is higher than that of its down-
stream stage. Although this bounds depend on the optimal sE

i−1 and sE
i , in computa-

tion, we can use the largest available lower bounds of sE
i−1 and sE

i to replace sE
i−1 and

sE
i in (26) and (27), respectively.

Note that the last set of lower bounds for the optimal expedited order-up-to
level is equal to the lower bound of the optimal expedited order-up-to level of its
downstream plus a number, which can be either positive or negative infinity; the last
lower bounds for optimal regular order-up-to level is equal to the lower bound of the
optimal expedited order-up-to level of its own stage plus a nonnegative number. Fur-
thermore, we remark that the lower bounds derived above do not have a dominating
relationship. That is, any lower bound can be a better one, depending on the problem
instance.

We next develop three sets of upper bounds for the optimal echelon base-stock
levels of each stage.

Theorem 12. For i = 1, . . . ,N, the upper bounds for sE
i and sR

i are, respectively,

s̄E1
i = F̄−1

i

(
cE

i − cR
i−1 +αcE

i−1

H1 +b−∑i−2
j=1(αcE

j − cR
j )

)
, (28)

if cE
i +∑i−1

j=1(αcE
j − cR

j )≤ H1 +b; otherwise s̄E1
i =−∞; and

s̄R1
i = F̄−1

i+1




αcE
i − cR

i

α

(
H1 +b−∑i−1

j=1(αcE
j − cR

j )

)




, (29)

if ∑i
j=1(αcE

j − cR
j )≤ H1 +b; otherwise, s̄R1

i =−∞.
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Proposition 13. (1) If cE
i +∑i−1

j=1(αcE
j − cR

j ) > H1 +b, then sE
j =−∞ for j ≥ i. (2) If

∑i
j=1(αcE

j − cR
j ) > H1 +b, then sR

j =−∞ for j ≥ i.

The second set of upper bounds is

Theorem 14. The upper bounds for sE
i and sR

i , i = 2, . . . ,N are

s̄E2
i = s̄R2

i−1, (30)

and

s̄R2
i = sR

i−1 +min





F̄−1




αcE
i − cR

i

α

(
H1 +b−∑i−1

j=1(αcE
j − cR

j )

)




,F−1
(

cR
i

αcE
i

)




. (31)

Again, for computation of (31), the available smallest upper bound of sR
i−1 is

used instead of the optimal one.
In the following we develop another set of newsvendor upper bounds for the

optimal base-stock levels. Let

C0 = 0

Ci = cE
i − cR

i−1−C−
i−1, i = 1, . . . ,N.

Theorem 15. The third set of upper bounds is

s̄E3
i = min

{
F̄−1

(
Ci

H1 +b

)
, F̄−1

2

(
Ci +αC+

i−1

H1 +b

)}
, i = 1, . . . ,N, (32)

and

s̄R3
i = F̄−1

2

(−cR
i +αCi

α(H1 +b)

)
, i = 1, . . . ,N. (33)

Similar to the case with lower bounds, none of these upper bounds dominate the
other. That is, any of these upper bounds can be sharper, depending on the problem
instance.

3.3 Heuristics and Numerical Results
In this subsection, we develop a simple heuristic based on the lower and upper

bounds we derived for the optimal echelon base-stock levels of each stage. We also
present numerical studies to demonstrate the effectiveness of the heuristic method.

For i = 1,2, . . . ,N, let

si
˜

E =max{sE j
i , j = 1,2,3}, si

˜
R =max{sR j

i , j = 1,2,3};

s̃E
i =min{s̄E j

i , j = 1,2,3}, s̃R
i =min{s̄R j

i , j = 1,2,3}.
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It is clear that si
˜

E ≤ sE
i ≤ s̃E

i and si
˜

R ≤ sR
i ≤ s̃R

i . Moreover, note that from Lemma

8, if cR
i−1 > cE

i and s̃E
i > s̃E

i−1, then we set s̃E
i = s̃E

i−1.
For i = 1,2 . . . ,N and 0≤ β ≤ 1, set

sEh
i =

[
β si

˜
E +(1−β )s̃E

i

]
, sRh

i =

[
β si

˜
R +(1−β )s̃R

i

]
, (34)

in which [ ] is the round off operator. We choose β = 0.5 as the heuristic policy. The
heuristic policy works in exactly the same manner as the original top-down echelon
base-stock policy but using sEh

i and sRh
i as the echelon base-stock levels for stage i.

In the following we present two groups of numerical examples classified by the
demand distributions to illustrate the effectiveness of this heuristic.

We use the relative error on the optimal system cost as the measure for effec-
tiveness of the heuristic. Let f̂ (x) denote the cost of the heuristic policy, the relative
error of the heuristic is defined as

Error% =
f̂ (x)− f (x)

f (x)
×100%.

In Group 1, we use Poisson demand with arrival rate λ = 5,10,50. We compare
the optimal and heuristic policies for a three-stage system. The parameters for the
examples are b = 30,60, hi = 0.1,1, c̄E

i = 4,10, c̄R
i = 2,6, for i = 1,2,3 and α =

0.95,T = 100. By restricting c̄E
i > c̄R

i , we generate 432 instances for each demand
arrival rate. The average relative error among 432 instances for λ = 5 is 0.57% with
the maximum 3.06%, for λ = 10 is 0.52% with the maximum 4.28% and for λ = 50
is 0.33% with the maximum 1.70%. The average relative error for all 1296 instances
is 0.47%.

Poisson Demand
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To show that the heuristic is robust under larger demand variance comparing to
mean, in Group 2, we use Negative Binomial demand with four sets of mean and
variance (30, 120), (30, 40), (6, 24), and (6, 8) while keep other parameters the same
as Group 1. These demand parameters generate 4 set of numerical examples and
each set includes 432 instances. The average relative error among 432 instances for
the first set is 0.42% with the maximum 3.62%, for the second is 0.37% with the
maximum 2.65% and for the third is 0.49% with the maximum 2.64% and for the
fourth is 0.48% with the maximum 2.88%. The average relative error for all 1728
instances is 0.44%. The numerical results indeed validate that the effectiveness of
our heuristic under larger demand variance.

Negative Binomial Demand

1559

142

25
2

0

200

400

600

800

1000

1200

1400

1600

1800

0-1 1-2 2-3 3+

Error(%)

N
u

m
b

e
r 

o
f 

In
s

ta
n

c
e

s

From our numerical studies, we find that it is more cost efficient to reduce the
holding cost at upstream stages and the expedited ordering cost at downstream stages.
In addition, the downstream’s optimal echelon base-stock levels are independent of
upstream’s cost parameters and upstream’s optimal echelon base stock levels are in-
creasing as downstream’s ordering costs increase and decreasing when downstream’s
holding cost increases. Moreover, the increase of backlog cost rate has larger impact
on the order-up-to level of expedited shipment (regular shipment) when the unit ex-
pedited shipping cost is relatively small (large).

4 Conclusion
In this chapter, we first present an explicit form solution for the optimal eche-

lon base-stock policy of Clark-Scarf model for both average cost and discounted cost
criteria. These simple expressions clearly identify the key determinants of the opti-
mal optimal policy, and they provide a novel approach to construct simple bounds
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and approximations of the optimal solutions. We illustrate the lower bound of Dong
and Lee (2003) for the discounted cost and the lower and upper bounds of Shang
and Song (2003) for the average cost. We also present new upper bounds for both
average cost and discounted cost criteria. By further extending the idea, we derive
newsvendor-type lower bounds and upper bounds for infinite horizon, periodic re-
view, serial inventory system with expedited and regular supply, and based on which
we develop a simple and effective heuristic. We use numerical examples to demon-
strate the effectiveness of the heuristics for both models.

In Section 3, the leadtimes for regular and expedited ordering are assumed to
be 1 and 0 respectively. By inserting stages to stand for leadtime, we can obtain
models where leadtimes between stages i + 1 and i is li, and the firm is allowed by
expedite shipping between any two stages. Through expedition, the firm can ship the
product from stage i + 1 to i in ` units of time for any ` = 0,1, . . . , li− 1. The cost
for such expedition will have to satisfy the relationship entailed by the model. See
Muharremoglu and Tsitsilkis (2003). In particular, the result for the case where the
leadtimes for stage i + 1 and i are li + 1 and li can be presented in similar fashion
to those in the chapter. This is a natural extension of the Fukuda model (1964) to
serial supply chains. In that case the recursive algorithms for computing the optimal
echelon base-stock levels are as follows. For convenience, let D(l) be the leadtime
demand over l periods. Let GE

1 (y) = cE
1 y+(H1 +b)E[(y−D(l1))−], and let sE

1 be the
minimizer of GE

1 , for i≥ 1, compute:

Gi,i(y) =GE
i ((y−D(li)∧ sE

i )−GE
i (sE

i )+αE[GE
i ((y−D(li +1))∨ sE

i )],

GR
i (y) =Gi,i(y)− cR

i y, sR
i = argminGR

i (y),

Gi,i+1(y) =GR
i (y∧ sR

i ),

GE
i+1(y) =cE

i+1y+Gi,i+1(y), sE
i+1 = argminGE

i+1(y).

We should accordingly revised the bounds developed to reflect the arbitrary lead-
times. For instance, the Fi and Fi+1 in Theorems 2 and 4 should represent the leadtime
demand distributions over ∑i

j=1 l j and ∑i+1
j=1 l j periods, respectively.

The results reported in this chapter can also be extended to the case where,
for some stages, there is only one transportation mode, while the others have two
transportation modes. In that case there is one echelon base-stock level for those
stages with only one transportation mode, and two echelon base-stock levels for those
stages with two transportation modes. Discussions on these extensions can be found
in Zhou (2006).
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