Absolutely Secure Message Transmission
Using a Key Sharing Graph

Yoshihiro Indo1,∗ Takaaki Mizuki2,† Takao Nishizeki1,‡

1School of Science and Technology, Kwansei Gakuin University,
2–1 Gakuen, Sanda-shi, 669–1337 Japan
2Cyberscience Center, Tohoku University,
Aramaki-Aza-Aoba 6–3, Aoba-ku, Sendai-shi, 980–8578 Japan

Abstract Assume that there are players and an eavesdropper Eve of unlimited computational
power and that several pairs of players have shared secret keys beforehand. A key sharing graph is
one in which each vertex corresponds to a player, and each edge corresponds to a secret key shared
by the two players corresponding to the ends of the edge. Given a key sharing graph, a player
wishes to send a message to another player so that the eavesdropper Eve and any other player can
get no information on the message. In this paper, we give a necessary and sufficient condition on a
key sharing graph for the existence of a protocol for such a purpose.

Keywords Message transmission; Key sharing graph; Eavesdropper; Absolutely secure; 2-connected graph; Internally disjoint paths; Tree

1 Introduction
Consider the following situation. There are n (≥ 2) players p1, p2, · · · , pn and an
eavesdropper Eve of unlimited computational power, and several pairs of players have
already shared secret keys. For simplicity, each secret key is assumed to be a one-bit
number, although the result can be easily generalized to the case where a key can be an
ℓ-bit number for any ℓ (≥ 1). Let G be a graph, called a key sharing graph [1, 4, 6, 7], in which each vertex represents a player pi, 1 ≤ i ≤ n, and each edge pi pj joining
vertices pi and pj represents a secret key ki,j ∈ {0, 1} shared by players pi and pj, as
illustrated in Fig. 1. (Refer [2] for the graph-theoretic terminology.) A secret key ki,j is
known only to players pi and pj. All players and Eve know the shape of graph G. Every
communication (conversation) between players is done through a public communication
network and hence can be overheard by any player and Eve, although many conventional
models of “secure message transmission” assume a private communication channel [3, 5, 9]. Since Eve has an unlimited computational power, one cannot use any cryptographic
protocol based on the computational hardness assumption such as the RSA public key
cryptosystem. All players can generate random numbers, and are “honest and faithful,”
that is, follow a specified protocol and don’t “lie.”

∗yoshihiro.indo7669@kwansei.ac.jp
†tm-paper+isora@g-mail.tohoku-university.jp
‡nishi@kwansei.ac.jp
Under such a situation, if G is a connected graph, that is, G has a spanning tree as drawn by thick lines in Fig. 1, then any player can send a one-bit message to the other players so that the eavesdropper Eve can get no information on the message. Clearly, this can be done, within $n - 1$ communication rounds, by the “flooding protocol,” which floods the message from p_1 to the other players by using the secret keys on a spanning tree as “one-time pads.” This can be done also with exactly one communication round [7].

Figure 1: An example of key sharing graph G.

In this paper we consider a protocol by which a player p_1 sends a message $m \in \{0, 1\}$ only to a designated player, say p_i, so that Eve and any player other than p_1 and p_i cannot get any information on m. We prove that there is a protocol for such a purpose if and only if G has either an edge $p_1 p_i$ joining vertices p_1 and p_i or a pair of paths between p_1 and p_i having no common vertices except p_1 and p_i. This result immediately implies that such a secure message transmission can be done between every pair of players if and only if G is a 2-connected graph.

2 Protocols and main result

In this section we first explain two protocols using one or two paths between p_1 and p_i in a key sharing graph G, and then present our main result.

Let $P = p_{j_0} p_{j_1} \cdots p_{j_t}$ be a path between vertices p_1 and p_i in G, where $j_0 = 1$ and $j_t = i$. Player p_1 can send a message $m \in \{0, 1\}$ to p_i by the following protocol I:

(a) $p_{j_0} (= p_1)$ computes $m \oplus k_{j_0 j_1}$ and sends it to p_{j_1}, where $k_{j_0 j_1}$ is a secret key shared by p_{j_0} and p_{j_1} and \oplus denotes the logical exclusive OR. Player p_{j_1} gets the message m by computing $m = (m \oplus k_{j_0 j_1}) \oplus k_{j_0 j_1}$ from $m \oplus k_{j_0 j_1}$ and $k_{j_0 j_1}$;

(b) a player on P getting the message m sends it to the succeeding player on P, similarly as in (a) above; and

(c) repeat (b) until p_i gets m.

Although this protocol I can transmit the message m from p_1 to p_i, the intermediate players $p_{j_1}, p_{j_2}, \cdots, p_{j_{t-1}}$ on path P would know the message m. To the contrast, we say that p_1 can send a message m to p_i absolutely securely (information-theoretically securely) if Eve and any player other than p_1 and p_i cannot get any information on m.

Clearly, if there is an edge $p_1 p_i$ in G, then p_1 can send a message m to p_i absolutely securely by the protocol I with path $P = p_1 p_i$, because there is no intermediate player on
P. Eve and any player other than \(p_1 \) and \(p_i \) cannot get any information on \(m \), because they don’t know the secret key \(k_{1i} \), which is used only once as a “one-time pad” [8].

![Figure 2: Internally disjoint paths \(P_1 \) and \(P_2 \) between \(p_1 \) and \(p_i \).](image)

Let \(G \) have a pair of paths \(P_1 \) and \(P_2 \) between \(p_1 \) and \(p_i \) which are internally disjoint, that is, have no common vertex except \(p_1 \) and \(p_i \), as illustrated in Fig. 2. Then \(p_1 \) can send a message \(m \) to \(p_i \) absolutely securely by the following protocol II. Player \(p_1 \) generates a random number \(m_1 \in \{0, 1\} \) and computes \(m_2 = m \oplus m_1 \). Player \(p_1 \) sends \(m_1 \) to \(p_i \) by the protocol I above using the secret keys on path \(P_1 \), and similarly sends \(m_2 \) to \(p_i \) using the keys on \(P_2 \). Player \(p_i \) computes \(m = m_1 \oplus m_2 \) from \(m_1 \) and \(m_2 \).

Every intermediate player on path \(P_1 \) gets \(m_1 \) but cannot get any information on \(m_2 \), and hence cannot get any information on \(m \). Similarly, every intermediate player on \(P_2 \) cannot get any information on \(m \). Of course, Eve and every player, not on \(P_1 \) or \(P_2 \), cannot get any information on \(m \).

Thus we have proved the sufficiency in the following theorem.

Theorem 1. A player \(p_1 \) can send a message to another player \(p_i \) absolutely securely by some protocol if and only if a key sharing graph \(G \) has either an edge joining \(p_1 \) and \(p_i \) or a pair of internally disjoint paths between \(p_1 \) and \(p_i \).

We prove the necessity in Theorem 1 in the succeeding section.

A graph \(G \) has a pair of internally disjoint paths between \(p_1 \) and \(p_i \) if and only if a flow network constructed from \(G \) has a network flow of value 2 from \(p_1 \) to \(p_i \) [10]. Therefore, one can examine in linear time whether \(G \) has a pair of internally disjoint paths between \(p_1 \) and \(p_i \).

A vertex \(v \) in a graph \(G \) is called a cut-vertex if the removal of \(v \) from \(G \) results in a disconnected graph. The vertex \(p_3 \) of the graph in Fig. 1 is a cut-vertex. A graph is defined to be 2-connected if there is no cut-vertex. The graph in Fig. 3 is 2-connected. A graph of three or more vertices is 2-connected if and only if there is a pair of internally disjoint paths between any two vertices [2]. Thus, Theorem 1 immediately implies the following corollary.

Corollary 1. Every player can send a message to any other player absolutely securely if and only if a key sharing graph \(G \) is 2-connected.

3 Proof of necessity

Before proving the necessity in Theorem 1, we formally define a graph, key information, protocol, communication model, etc. [6].
Figure 3: Key sharing graph G, in which a key value is attached to each edge.

We denote by $G = (V, E)$ a graph with vertex set V and edge set E. There may exist multiple (parallel) edges in G, as illustrated in Fig. 3. For each vertex $p_v \in V$, we denote by $E(p_v)$ the set of all edges incident to p_v. We denote by $E(p_u, p_v)$ the set of all multiple edges joining vertices p_u and p_v, and hence $E(p_u, p_v) = E(p_u) \cap E(p_v)$.

A vertex p_v in a key sharing graph $G = (V, E)$ represents a player p_v, while an edge e_j in G represents a secret key $k_j \in \{0, 1\}$ shared by the two players represented by the ends of e_j. If $|E(p_u, p_v)| = \ell$, then each of the ℓ multiple edges in $E(p_u, p_v)$ represents a 1-bit secret key and hence players p_u and p_v share a secret key of ℓ bits. All the keys are assumed to be uniformly distributed over $\{0, 1\}$. Therefore, there are $2^{|E|}$ possibilities. Each can be represented by a set of keys

$$K = \{(e_j, k_j) | e_j \in E\}.$$

Such a set K is called a key information of G. There are exactly $2^{|E|}$ key informations, and each of them occurs with probability $1/2^{|E|}$.

For a set $E' \subseteq E$, let

$$K(E') = \{(e_j, k_j) | e_j \in E'\}.$$

For every player $p_v \in V$, the set $K(E(p_v))$ is called a partial key information of p_v, and is simply denoted by $K(p_v)$. $K(p_v)$ is known to player p_v.

Let $r_v \in R_v$ be a random number given for each player $p_v \in V$, where R_v is a non-empty finite set. The size of set R_v depends on a protocol and a key sharing graph. For the protocol II in the preceding section, the sender p_1 needs a one-bit random number m_1, and hence $|R_1| = 2$. On the other hand, every other player p_v needs no random number, and hence we set $|R_v| = 1$. The set $\mathcal{R} = \{(p_v, r_v) | p_v \in V\}$ is called a random number set of G.

In our protocol it is assumed that each player $p_v \in V$ is given a partial key information $K(p_v)$ and a random number $r_v \in R_v$ as her input. In the first communication round of a protocol, the sender p_1 broadcasts a cryptogram\(^1\), computed from a message m, a partial key information $K(p_1)$ and a random number r_1, to all players through a public communication network, while every other player $p_v \in V - \{p_1\}$ broadcasts a cryptogram computed only from $K(p_v)$ and r_v. In the succeeding communication rounds, every player p_v broadcasts a cryptogram computed from $K(p_v)$, r_v and all the cryptograms that have

\(^{1}\)Precisely speaking, it is not necessarily a cryptogram, but we call it a cryptogram for convenience.
been broadcasted through a network. Finally, the receiver p_i computes a value in $\{0, 1\}$ from $K(p_i)$, r_i and all the broadcasted cryptograms, and output it as a message received from p_1. We say that p_1 can send a message m to p_i if the value output by p_i is equal to the message m. The set of all cryptograms that are broadcasted during the execution of a protocol is called a conversation σ. Eve and every player can overhear σ since all cryptograms are broadcasted through a public communication network.

The triplet (K, \mathcal{R}, m) of a key information K, a random number set \mathcal{R} and a message m is called a protocol point. Given a protocol and a key sharing graph G with designated sender p_1 and receiver p_i, both the conversation σ and the value output by p_i are uniquely decided only by a protocol point (K, \mathcal{R}, m). Player p_1 must send a message to p_i absolutely securely for any protocol point (K, \mathcal{R}, m). Therefore, neither Eve nor any player other than p_1 and p_i can get any information on a message m. Hence, for any probability distribution $P(m)$ of message $m \in \{0, 1\}$, any conversation σ and any player p_v other than p_1 and p_i,

$$P(m|\sigma) = P(m)$$

and

$$P(m|\sigma, K(p_v), r_v) = P(m),$$

where $P(m|\sigma)$ is the (conditional) probability of a message being m under the condition that a conversation is σ, and $P(m|\sigma, K(p_v), r_v)$ is similarly defined. (Obviously, Eq. (2) implies Eq. (1) if there are three or more players.)

We have thus formally defined a protocol, a communication model, etc, and are now ready to prove the necessity in Theorem 1.

Proof of the necessity in Theorem 1

Suppose for a contradiction that p_1 can send any message m to p_i absolutely securely by some protocol although a key sharing graph G has neither edge p_1p_i nor a pair of internally disjoint paths between p_1 and p_i. Then we can derive a contradiction, as follows.

![Figure 4: Graph G and subgraph Gi.](image)

We first define a subgraph $G_i = (V_i, E_i)$ of G. If vertices p_1 and p_i are contained in the same connected component of G as illustrated in Fig. 4(a), then there is a cut-vertex p_c such that p_1 and p_i are contained in different connected components in the graph $G - p_c$ obtained from G by deleting p_c, because G has no pair of internally disjoint paths
between p_1 and p_i. Let $G_i = (V_i, E_i)$ be the connected component of $G - p_c$ containing p_i. The subgraph G_i is drawn by thick lines in Fig. 4(a). On the other hand, if p_1 and p_i are contained in different connected components of G as illustrated in Fig. 4(b), then there is no path between p_1 and p_i and let $G_i = (V_i, E_i)$ be the connected component of G containing p_i. In Fig. 4(b) G_i is drawn by thick lines.

Let σ be the conversation for a protocol point $(K, R, 1)$. We write $K = \{(e_j, k_j)| e_j \in E\}$ and $R = \{(p_v, r_v)| p_v \in V\}$, as illustrated in Fig. 5. Since $m = 1$, p_i outputs 1.

There is a protocol point $(K', R', 0)$ with the same conversation σ above. Otherwise, a message is always 1 under the condition that a conversation is σ, and hence,

$$P(m|\sigma) = \begin{cases} 1 & \text{if } m = 1; \\ 0 & \text{otherwise}, \end{cases}$$

contradicting to the assumption that Eq. (1) holds for any probability distribution $P(m)$ of message m. Let $K' = \{(e_j, k'_j)| e_j \in E\}$ and $R' = \{(p_v, r'_v)| p_v \in V\}$, as illustrated in Fig. 6. Of course, p_i outputs 0 for the protocol point $(K', R', 0)$.

In particular, if p_1 and p_i are contained in the same connected component, then there is a protocol point $(K', R', 0)$ with conversation σ such that $K'(p_c) = K(p_c)$ and $r'_c = r_c$. Otherwise,

$$P(m|\sigma, K(p_c), r_c) = \begin{cases} 1 & \text{if } m = 1; \\ 0 & \text{otherwise}, \end{cases}$$

counter to Eq. (2).

We then consider a protocol point $(K'', R'', 1)$ constructed from $(K, R, 1)$, $(K', R', 0)$ and $G_i = (V_i, E_i)$ as follows:

$$K'' = K(E - E_i) \cup K'(E_i) \quad (3)$$

and

$$R'' = \{(p_v, r_v)| p_v \in V - V_i\} \cup \{(p_v, r'_v)| p_v \in V_i\}. \quad (4)$$

Figure 7 illustrates $(K'', R'', 1)$ for $(K, R, 1)$ in Fig. 5 and $(K', R', 0)$ in Fig. 6. For the protocol point $(K'', R'', 1)$, p_i must output 1.
Let $\mathcal{A}'' = \{ (p_v, r''_{p_v}) | p_v \in V \}$. Then we now claim that
\[
K''(p_v) = K(p_v) \quad \text{and} \quad r''_{p_v} = r_v, \tag{5}
\]
for every $p_v \in V - V_i$ and
\[
K''(p_v) = K'(p_v) \quad \text{and} \quad r''_{p_v} = r'_v, \tag{6}
\]
for every $p_v \in V_i$. Clearly, the claim holds if p_1 and p_i are contained in different connected components of G. Furthermore, the claim holds for p_v if either $p_v \in V - V_i$ or p_v is not adjacent to p_v in G. Therefore, one may assume that p_1 and p_i are contained in the same connected component of G, $p_v \in V_i$, and p_v is adjacent to p_i in G. Then $E(p_v) = E(p_v, p_c) \cup (E(p_v) \cap E_i)$ and $E[p_v, p_c] \subseteq E - E_i$. Since $K'(p_v) = K(p_v)$ and $E[p_v, p_c] \subseteq E(p_v)$, we have $K'(E[p_v, p_c]) = K(E(p_v, p_c))$. Therefore, by Eq. (3) we have
\[
K''(p_v) = K(E(p_v, p_c)) \cup K'(E(p_v) \cap E_i) = K'(E[p_v, p_c]) \cup K'(E(p_v) \cap E_i) = K'(E(p_v)).
\]
Since $p_v \in V_i$, by Eq. (4) we have $r''_{p_v} = r'_v$. Thus Eq. (6) holds for p_v.

We now claim that the conversation for $(K'', \mathcal{A}'', 1)$ is the same as σ. Since $K''(p_1) = K(p_1)$, $r''_{p_1} = r_1$, and $m = 1$, the cryptogram broadcasted by p_1 for $(K'', \mathcal{A}'', 1)$ is the same as that for $(K, \mathcal{A}, 1)$. A cryptogram broadcasted by any player other than p_1 for $(K'', \mathcal{A}'', 1)$ is the same as either that for $(K, \mathcal{A}, 1)$ or that for $(K', \mathcal{A}', 0)$, because either $K''(p_v) = $
\(K(p_v) \) and \(r''_v = r_v \) or \(K''(p_v) = K'(p_v) \) and \(r''_v = r'_v \) and both the conversation for \((K, \mathcal{R}, 1)\) and that for \((K', \mathcal{R}', 0)\) are \(\sigma \).

However, \(p_i \) would output the value 0 for \((K'', \mathcal{R}'', 1)\), because \(K''(p_i) = K'(p_i), r''_i = r'_i \), and \(p_i \) outputs 0 for \((K', \mathcal{R}', 0)\). This is a contradiction, because \(p_i \) outputs 1 for \((K'', \mathcal{R}'', 1)\). \(\Box \)

4 Conclusions

We showed that a player \(p_1 \) can send a message to another player \(p_i \) absolutely securely if and only if a key sharing graph \(G \) has either an edge \(p_1p_i \) or a pair of internally disjoint paths between \(p_1 \) and \(p_i \). This immediately implies that every player can send a message to any other player absolutely securely if and only if \(G \) is 2-connected. For simplicity, we assumed that a message and all secret keys are 1-bit numbers. However, one can easily extend the results to the case where a message and all secret keys are \(\ell \)-bit numbers for any \(\ell (\geq 1) \). In this case, \(\oplus \) must be a bit-wise exclusive OR.

We obtained also a sufficient condition for a player \(p_1 \) to be able to send a message to a multiple number of designated players absolutely securely. However, the detail is omitted in this extended abstract.

References