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Abstract In this paper, we consider a two-phase queueing system with impatient customers and
multiple vacations. Customers arrive at the system according to a Poisson process. They receive
the first essential service as well as a second optional service. Arriving customers may balk with a
certain probability and may depart after joining the queue without getting service due to impatience.
Lack of service occurs when the server is on vacation or busy during the first phase of service. We
analyze this model and derive the probability generating functions for the number of customers
present in the system for various states of the server. We further obtain the closed-form expressions
for various performance measures including the mean system sizes for various states of the server,
the average rate of balking, the average rate of reneging, and the average rate of loss.

Keywords Queueing systems; impatient customers; multiple vacations; probability generating
functions; mean system sizes.

1 Introduction
In real life, many queueing situations arise in which there may be a tendency for cus-

tomers to be discouraged by a long queue. As a result, a customer may either decide
not to join the queue (i.e. balk) or depart after joining the queue without getting service
due to impatience (i.e. renege). Queueing systems with impatient customers appear in
many real life situations such as those involving impatient telephone switchboard cus-
tomers, hospital emergency rooms handling critical patients, and inventory systems that
store perishable goods. There is growing interest in the analysis of queueing systems with
impatient customers. This is due to their potential application in communication systems,
call centers, production-inventory systems and many other related areas, see for instance
[1]-[3] and the references therein.

Queueing systems with impatient customers have been studied by a number of au-
thors. There is an extensive amount of literature based on this kind of model and we refer
the reader to [4]-[9] and references therein. In all this papers, the source of impatience has
always been taken to be either a long wait already experienced upon arrival at a queue, or
a long wait anticipated by a customer upon arrival.

Recently, Altman and Yechiali [10], [11] analyzed queueing models where customers
become impatient only when the servers are on vacation and unavailable for service. In
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other words, the cause of the impatience is the absence of the server. The M/M/1, M/G/1
and M/M/c queues were investigated in [10], and the M/M/∞ queue was investigated in
[11]. Yue and Yue [12] studied an M/M/c/N queue with synchronous vacations by consid-
ering customers’ impatience under balking and reneging. Perel and Yechiali [13] analyzed
queueing system operating in a 2-phase (fast and slow) Markovian random environment.
When in the slow phase, customers became impatient due to a slow service rate.

In all the papers mentioned above, it is assumed that only one phase service is pro-
vided by servers. However, in many real service systems, the server may provide a second
optional service. To the best of our knowledge, for two-phase queueing systems with va-
cations, there is no literature which takes customers’ impatience into consideration. In this
paper, we consider a two-phase queueing system with multiple vacations and impatient
customers.

The paper is organized as follows: In Section 2, we describe the model. In Section
3, we carry out the equilibrium analysis of the system state and derive the probability
generating functions of the number of customers present in the system for various states
of the server. We further obtain the closed-form expressions for various performance
measures including the mean system sizes for various states of the server, the average rate
of balking, the average rate of reneging, and the average rate of loss. Conclusions are
given in Section 4.

2 Model Descriptions
In this section, we consider an M/M/1 queueing system with impatient customers and

multiple vacations, in which the customers receive two-phase service.
Customers arrive according to a Poisson process at rate λ . They receive the first

essential service (FES) as well as the second optional service (SOS) from a single server,
who serves the customers on a first-come first-served (FCFS) basis. The FES is needed
by all arriving customers. As soon as the FES of a customer is completed, then with
a probability θ , the customer may opt for the SOS, or else with a probability 1− θ , it
may opt to leave the system, in which case another customer at the head of the queue (if
any) is taken up for its FES. The service times of the FES and the SOS have exponential
distributions with parameters µ1 and µ2, respectively.

When the server finishes serving a customer and finds the system empty, the server
leaves for a vacation of random length V . On return from a vacation if the server finds
more than one customer waiting, it serves the customer at the head of the queue for its
FES and continues to serve in this manner until the system is empty. Otherwise, it im-
mediately goes for another vacation. The vacation time V has an exponential distribution
with parameter η .

A customer who on arrival finds the server is on vacation (or busy carrying out the
FES of a customer), either decides to join the queue with probability b0 (or b1), or balk
with probability 1−b0 (or 1−b1). After joining the queue, in the case that the server is
on vacation (or busy with the FES of a customer), each customer will wait a certain length
of time T0 (or T1) for service to begin before they become impatient and leave the queue
without being served. These times T0 and T1 are assumed to be distributed exponentially
with parameters ξ0 and ξ1, respectively.

We assume that all the random variables defined above are independent.
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Remark 1. If θ = 0, ξ1 = 0, µ2 = 0 and b0 = b1 = 1, the current model reduces to
the M/M/1 model with impatient customers and multiple vacations that was studied by
Altman and Yechiali [10].

3 Stationary Analysis
In this section, we present a stationary analysis for the model described in the last

section. We first derive the probability generating functions of the number of customers
present in the system for various states of the server. Then, we derive the closed-form
expressions for various performance measures including the mean system size for various
states of the server, the average rate of balking, the average rate of reneging and the
average rate of loss.

3.1 Balance Equations and Generating Functions
Let L denote the number of customers in the system, and let J denote the status of the

server, which is defined as follows: J = 0 denotes that the server is on vacation, J = 1
denotes that the server is busy with a FES, and J = 2 denotes that the server is busy with
a SOS. Then, the pair (J,L) defines a continuous-time Markov process with state space
Ω = {0,0}∪{( j,n) : j = 0,1,2;n = 1,2, ...}.

Let Pjn = P{J = j,L = n}, j = 0,1,2; n = 0,1,2, ..., denote the steady state probabil-
ities of the system. Then, the set of balance equations is given as follows:

λb0P00 = ξ0P01 +µ1(1−θ)P11 +µ2P21, (1)

(λb0 +ξ0 +η)P0n = λb0P0n−1 +(n+1)ξ0P0n+1, n≥ 1, (2)

[λb1 +µ1 +(n−1)ξ1]P1n = ηP0n +λb1P1n−1 +[µ1(1−θ)+nξ1]P1n+1

+µ2P2n−1, n≥ 1, (3)

(λ +µ2)P2n = µ1θP1n +λP2n−1, n≥ 1, (4)

P00 +
∞

∑
n=1

(P0n +P1n +P2n) = 1 (5)

where P10 ≡ 0 and P20 ≡ 0.
Define the probability generating functions (PGFs) as

Q j(z) =
∞

∑
n=1

Pjnzn, |z| ≤ 1, j = 0,1,2.

Then, Q0(z), Q1(z) and Q2(z) are the probability generating functions of the number of
customers present in the system when the server is on vacation, busy with a FES, and
busy with a SOS, respectively.

Multiplying each equation for n in Eq. (2) by zn, and summing all possible values of
n and re-arranging terms, we get

ξ0(1− z)Q′0(z)− [η +λb0(1− z)]Q0(z) =−λb0P00z+ξ0P01 (6)
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where Q′0(z) =
d
dz

Q0(z). Similarly, using Eq. (3), we obtain

ξ1(1− z)Q′1(z)− f (z)Q1(z)+
µ2

z
Q2(z)+ηQ0(z) = µ1(1−θ)P11 +µ2P21 (7)

where

f (z) = λb1(1− z)+(ξ1−µ1)(
1
z
−1)+

µ1θ
z

(8)

and Q′1(z) =
d
dz

Q1(z). Similarly, using Eq. (4), we get

Q2(z) =
µ1θ

λ (1− z)+µ2
Q1(z). (9)

By solving the differential equations (6) and (7), we can obtain Q0(z) and Q1(z). The
following theorems give the solutions of Eqs. (6) and (7).

Theorem 1. The probability generating function Q0(z) of the number of customers
present in the system when the server is on vacation is expressed as follows:

Q0(z) =
λb0

ξ0
e

λb0
ξ0

z
(1− z)

− η
ξ0 F(z)P00 (10)

where

F(z) =
∫ z

0

(
A
B
− x
)

e
− λb0

ξ0
x
(1− x)

η
ξ0
−1

dx (11)

with

A =
∫ 1

0
e
− λb0

ξ0
x
x(1− x)

η
ξ0
−1

dx, (12)

and

B =
∫ z

0
e
− λb0

ξ0
x
(1− x)

η
ξ0
−1

dx. (13)

Proof. For z 6= 1, Eq. (6) can be written as follows:

Q′0(z)+
[
−λb0

ξ0
− η

ξ0(1− z)

]
Q0(z) =−

1
ξ0

(λb0P00z−ξ0P01)(1− z)−1. (14)

Multiplying both sides of Eq. (14) by e
− λb0

ξ0
z
(1− z)

η
ξ0 , we get

d
dz

[
e
− λb0

ξ0
z
(1− z)

η
ξ0 Q0(z)

]
=− 1

ξ0
(λb0P00z−ξ0P01)e

− λb0
ξ0

z
(1− z)

η
ξ0
−1
. (15)
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By solving Eq. (15) we can obtain Q0(z) which is given by Eq. (10). The details are
omitted.

Theorem 2. The probability generating function Q1(z) of the number of customers
present in the system when the server is busy with a FES is expressed as follows:

Q1(z) =
λb0

ξ1
e

λb1
ξ1

z
zu(λ (1− z)+µ2)

−vH(z)P00 (16)

where

H(z) =
∫ z

0
e
− λb1

ξ1
x
x−u(1− x)

−(1+ η
ξ0

)
(λ (1− x)+µ2)

vG(x)dx (17)

with

G(z) =
(

1− A
B

)
(1− z)

η
ξ0 − η

ξ0
e

λb0
ξ0

z
F(z) (18)

and

u = 1− µ1(1−θ)
ξ1

− µ1µ2θ
ξ1(λ +µ2)

, v =
λ µ1θ

ξ1(λ +µ2)
. (19)

Proof. The details of the proof are omitted.
Eqs. (10) and (16) express Q0(z) and Q1(z) in terms of P00. Also, from Eq. (9),

Q2(z) is a function of Q1(z). Thus, once P00 is calculated, Q0(z), Q1(z) and Q2(z) are
completely determined. We derive the probabilities P00 and the mean system sizes for
various states of the server in the next section.

3.2 Mean System Sizes
In order to derive the mean system sizes for various states of the server, we first derive

the probability P00.
Let z = 1 in Eqs. (10), (16) and (9), we obtain

Q0(1)=
λb0

η

(
1− A

B

)
P00, (20)

Q1(1)=
λb0

ξ0
e

λb1
ξ1 µ−v

2 H(1)P00 (21)

and

Q2(1) =
µ1θ
µ2

Q1(1). (22)

Noting that Q j(1) = ∑∞
n=1 Pjn, j = 0,1,2, and using Eq. (5), we have

P00 +Q0(1)+Q1(1)+Q2(1) = 1. (23)
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Substituting Eqs. (20), (21) and (22) into Eq. (23), we get

P00 =

{
1+

λb0

ξ0

(
1− A

B

)
+

λb0

ξ0

(
1+

µ1θ
µ2

)
e

λb1
ξ1 µ−v

2 H(1)
}−1

. (24)

Let E(L j) = Q′j(1) = ∑∞
n=1 nPjn, j = 0,1,2, denote the mean system sizes for various

states of the server.

Theorem 3. The mean system size E(L0) when the server is on the vacation is given by

E(L0) =
λb0

ξ0 +η

[
1+
(

1− A
B

)
λb0

ξ0

]
P00. (25)

The mean system size E(L1) when the server is busy with a FES is given by

E(L1) =
η
ξ1

E(L0)+
1
ξ1

[(λb1 +ξ1−µ1)Q1(1)+λQ2(1)] . (26)

The mean system size E(L2) when the server is busy with a SOS is given by

E(L2) =
λ
µ2

Q2(1)+
µ1θ
µ2

E(L1). (27)

Proof. The details of the proof are omitted.
Thus, the mean system size can be calculated by

E(L) = E(L0)+E(L1)+E(L2). (28)

3.3 Other Performance Measures
In this section, we present other important performance measures including the aver-

age rate of balking, denoted by Rbalk, the average rate of reneging, denoted by Rreneg, and
the average rate of loss, denoted by Rloss.

When the system is in state ( jn), j = 0,1, then the instantaneous rate of balking is
λ (1−b j), j = 0,1. Thus, the average rate of balking is given by

Rbalk =
∞

∑
n=0

λ (1−b0)P0n +
∞

∑
n=0

λ (1−b1)P1n

=λ (1−b0)(P00 +Q0(1))+λ (1−b1)Q1(1) (29)

where Q0(1), Q1(1) and P00 are given by Eqs. (20), (21) and (24), respectively.
When the system is in state (0n), there are n waiting customers in the queue. Thus,

the instantaneous rate of reneging is nξ0. However, when the system is in state (1n),
there are n− 1 waiting customers in the queue. Thus, the instantaneous rate of reneging
is (n−1)ξ0. Therefore, the average rate of reneging is given by

Rrenege =
∞

∑
n=1

nξ0P0n +
∞

∑
n=0

(n−1)ξ1P1n

=ξ0E(L0)+ξ1[E(L1)−Q1(1)] (30)

where Q1(1), E(L0) and E(L1) are given by Eqs. (21), (25) and (26), respectively.
The average rate of loss (due to balking and reneging) is given by Rloss = Rbalk +

Rrenege.
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4 Conclusions
In this paper a two phase queueing model with impatient customers and multiple

vacations is discussed. Our model considers customers’ impatience under the balking
and the reneging. The model investigated is more realistic than those existing ones since
the customers may get impatience not only when the server is on vacation but also is
busy carrying out the first essential service. The closed form expressions for various
performance measures including the mean system sizes for various states of the server,
the average rate of balking, the average rate of reneging, and the average rate of loss, are
obtained.

Acknowledgements
This work is supported by the National Natural Science Foundation of China (No.

71071133), and is supported in part by GRANT-IN-AID FOR SCIENCE RESEARCH
(No. 21500086), Japan.

References
[1] T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload, ACM Sigmetrics

Performance Evaluation Review, 29, 342-343, 2001.
[2] N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research

prospects, Manufacturing and Service Operations Management, 5, 79-141, 2003.
[3] S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with

customer impatience, Operations Research Letters, 38, 267-272, 2010.
[4] C. Palm, Methods of judging the annoyance caused by congestion, Tele, 4, 189-208, 1953.
[5] D. J. Daley, General customer impatience in the queue GI/G/1, Journal of Applied Probability,

2, 186-205, 1965.
[6] L. Takacs, A single-server queue with limited virtual waiting time, Journal of Applied Prob-

ability, 11, 612-617, 1974.
[7] F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers, Ad-

vances in Applied Probability, 16, 887-905, 1984.
[8] O. J. Boxma and P. R. de Waal, “Multiserver queues with impatient customers," ITC, 14,

743-756, 1994.
[9] B. Van Houdt, R. B. Lenin and C. Blonia, Delay distribution of (im)patient customers in a

discrete time D-MAP/PH/1 queue with age-dependent service times, Queueing Systems, 45,
59-73, 2003.

[10] E. Altman and U. Yechiali, Analysis of customers’ impatience in queues with server vaca-
tions, Queueing Systems, 52, 261-279, 2006.

[11] E. Altman and U. Yechiali, Infinite-server queues with systems’ additional task and impatient
customers, Probability in the Engineering and Informational Sciences, 22, 477-493, 2008.

[12] D. Yue and W. Yue, Analysis of M/M/c/N queueing system with balking, reneging and syn-
chronous vacations, In: Wuyi Yue et al. (Eds.), Advanced in Queueing Theory and Network
Applications, New York: Springer, 165-180, 2009.

[13] N. Perel and U. Yechiali, Queues with slow servers and impatient customers, European Jour-
nal of Operational Research, 201, 247-258, 2010.

298 The 10th International Symposium on Operations Research and Its Applications


