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Abstract In this paper, we investigate the effect of a sharp cash level fluctuation resulting from
the inflow and outflow of a large amount of cash and how the cash balance is managed. We describe
the cash level evolution as stochastic jump-diffusion process with double exponential distributed
jump size, and formulate a cash management model for minimizing the sum of the transaction and
holding-penalty costs. This model can be formulated as an impulse control model, and we derived
the cost function under the assumption that a band-type policy exists. Moreover, we discuss the ef-
fect of such a fluctuation on the optimal policy though some numerical examples. Consequently, we
show the cost function explicit and clarify that the size of sharp fluctuation has strong implications
for the optimal policy.
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1 Introduction

A company trying to implement smooth business activity needs to hold some cash to
prepare for an unscheduled settlement risk. In this paper, we investigate the effect of the
cash demand risk which means sudden increase or decrease in a large amount of cash and
how the cash balance is managed. A large amount of cash demand arises due to natural or
human-caused disaster, for example, earthquake, tsunami, terrorism and financial crash.
On the contrary, unpredictable inflow of a large amount of cash occurs when an item will
be extremely popular or the debt will be refunded. Such a risk is called “exogenous risk”.
Moreover, there is intrinsic uncertainty in cash demand risk which is called “inherent
risk”. One of the typical occasions is the time lag between the necessary expenses for
production and income from future sales. Under these uncertainties, the objective of
the management is to find an optimal cash balance to minimize total cost consisting of
transaction and holding-penalty costs for the cash.

Cash management problem has been studied by various researchers by extended the
continuous-review stochastic inventory models (e.x. Constantinides and Richard [6], Bac-
carin [1] and Baccarin [2]). The inherent risk has been described as diffusion process in
these papers. The exogenous risk has been described as compound Poisson demand (e.x.
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Federgruen and Schechner [8], Zipkin [12]) in inventory literature or jump diffusion pro-
cess in finance literature (e.x. Kou and Wang [9], Sepp [11]). The most related research
to our study is Bensoussan, Liu and Sethi [4]. They studied an inventory model with a
fixed ordering cost and a general demand process that consists of a compound Poisson
demand and a diffusion process. They showed that an (s, S) policy is optimal by using a
quasi-variational inequality (QVI) when the demand is a mixture of a diffusion process
and a compound Poisson process with exponentially distributed jumps size. Following
research of Bensoussan, Liu and Sethi [4], Benkherouf and Bensoussan [3] showed the
general case where the demand is a combination of a diffusion and a general compound
Poisson process with nonnegative jump size. In our study, we, instead, consider double
exponentially distributed jumps size to deal with the negative jump size, since there are
not only the outflows of a large amount of cash, but also are the inflows of a large amount
of cash.

In this paper, we derive an explicit formula for the solution of QVI by assuming that an
optimal policy is obtained as a band policy. The band policy is as follows: when the cash
level falls to d (rise to u), then it is adjusted up to level D (down to U), d < D <U < u. In
order for clarity the effects of the exogenous risk on the optimal policy, we present some
numerical examples in limited policy having only the two thresholds d and D.

The rest of this paper is organized as follows: In the next section, we construct a math-
ematical model to describe the cash management problem and use an impulse control to
solve it. In the third section, we present numerical studies and the final section concludes
the research.

2 The Model
Consider a manager who manages the cash balance of a firm faces with the two uncer-

tainties of the demand: an inherent risk and an exogenous risk. Let Zt be the cumulative

demand in the interval [0,t] and is given by

Zt = µt +σWt +
Nt

∑
i=1

Yi, (1)

where µ is drift, σ is the volatility and Wt is a standard Brownian motion with W0 =

0. Nt is a Poisson process with rate λ ≥ 0, and Yi, i = 1,2, · · · , is a sequence of i.i.d.

random variables having distribution density m(·). We assume that Wt , Nt and Yi are all

independent. According to the model, the cumulate demand consists of three factors: a

deterministic trend of demand µ , inherent risk described by the Brownian motion, and

exogeneous risk captured by the Poisson-arrival jump part. In our research, we assume

that Yi has a double exponential distribution and its density function is given by

m(y) = pη1e−η1y1{y≥0}+qη2eη2y1{y<0}, (2)

where η1,η2 > 0 and p,q≥ 0 such that p+q = 1. The first and second moments of Y are

given by E[Y ] = p/η1−q/η2 ≡ µm and E[Y 2] = 2(p/η2
1 +q/η2

2 )≡ µ̂m, respectively.
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A cash management policy consists of a sequence (τi,ξi), i = 1,2, · · · , where τi rep-

resents the ith time of adjusting and ξi represents the quantity adjusted at time τi, where

τ1 < τ2 < · · · . If the policy v = {(τi,ξi), i = 1,2, · · ·} is adopted, then the cash level at

time t evolves as

Xv
t = x−Zt +

∞

∑
i=1

I{τi<t}ξi, (3)

where Xv
0 = x is an initial cash level at time t = 0.

When the cash level changes from x to x+ξ , the transition costs occur. We denote a

fixed cost by K1 (K2) and proportional cost by k1 (k2) if the manager increases (decreases)

the cash. Transaction costs function is the sum of fixed and proportional costs of form

T (ξi) =

{
K1 + k1ξi, if ξi ≥ 0,
K2 + k2|ξi|, if ξi < 0.

(4)

We assume that holding and penalty costs function C(x) to be quadratic form as

C(x) =

{
h1x+h2x2, if x≥ 0,
−p1x+ p2x2, if x < 0.

(5)

Baccarin [1] treated the problem with the quadratic holding-penalty function in (5) for

no-jump case.

Given initial cash level x and control v, the associated total expected cost is given by

Jx(v) = Ev
x

[∫ ∞

0
C(Xv

t )e
−αtdt +

∞

∑
i=1

T (ξi)e−ατi | Xv
0 = x

]
(6)

where α > 0 is discount rate. Then, our objective is to find a policy v∗ to minimize the

expected total cost with the value function

Φ(x) = inf
v∈V

Jx(v). (7)

Next we consider the formulating the problem given by (7) as a Quasi-Variational

inequality problem. We introduce the following operators:

(Mφ)(x) = inf
ξ
{T (ξ )+φ(x+ξ )}, (8)

(Aφ)(x) = −1
2

σ2φ
′′
(x)+µφ

′
(x)+αφ(x)

−λ
∫ ∞

−∞
(φ(x− y)−φ(x)+ yφ

′
(x))m(y)dy. (9)

Then, the optimal expected cost for the cash management model is given as a solution of

the following (QVI) problem.
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Definition 2.1.
A function φ satisfies the quasi-variational inequalities for the problem (7) if, for every x,

Aφ ≤C, (10)

φ ≤Mφ , (11)

(Aφ −C)(φ −Mφ) = 0. (12)

Davis, Guo and Wu [7] showed regularity properties of the vaule function for an

infinite-horizon discounted cost impulse control problem, where the underlying controlled

process is a multidimensional jump diffusion. Thus, if there is a sufficiently regular solu-

tion of (10) - (12), the solution is the value function.

3 Candidate Function for Value Function and the Opti-
mal Policy

We expect that an optimal policy is determined by parameters (d,D,U,u) where−∞<

d < D <U < u < ∞. When the cash level is x, we transact x to level δ (x) where

δ (x) =





D, if x≤ d,
x, if d ≤ x≤ u,
U, if u≤ x.

(13)

Then, the function φ would satisfies Aφ =C for d ≤ x≤ u, that is,

− 1
2

σ2φ
′′
(x)+(µ−λ µm)φ

′
(x)+(λ +α)φ(x)−λ

∫ ∞

−∞
φ(x− y)m(y)dy−C(x) = 0 (14)

and

φ(x) =

{
φ(D)+K1 + k1(D− x), for x≤ d,
φ(U)+K2 + k2(x−U), for x≥ u.

(15)

Moreover, if φ is differentiable, neccessary conditions for optimality of the actions in

(d,u) are

φ
′
(D) =−k1, φ

′
(U) = k2. (16)

And, continuity of the derivative of the value function requires

φ
′
(d) =−k1, φ

′
(u) = k2. (17)

In order to find the general solution of the equation (14), we need an function G(·)
such as

G(θ) =−(µ−λ µm)θ +
1
2

σ2θ 2 +λ
(

pη1

η1 +θ
+

qη2

η2−θ
−1
)
. (18)
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Kou and Wang (2003) showed that the four roots of an equation G(θ) = α for any α > 0

are real numbers. Denote them by β1, β2, β3, β4. These roots satisfy

−∞ < β4 <−η1 < β3 < 0 < β2 < η2 < β1 < ∞. (19)

Proposition 3.1.
Suppose that there exist four parameters d, D, U and u. Then, the function φ satisfying

the equations (14) and (15) are given by

φ(x) =





φ(d)+ k1(d− x), if x≤ d,
(A1 +A5)eβ1x +(A2 +A6)eβ2x +A7eβ3x +A8eβ4x +ψ1(x), if d ≤ x≤ 0,
(A3 +A7)eβ3x +(A4 +A8)eβ4x +A5eβ1x +A6eβ2x +ψ2(x), if 0≤ x≤ u,
φ(u)+ k2(x−u), if u≤ x,

(20)

where

ψ(x) =

( p2
α
h2
α

)
x2 +

(− 1
α2 (α p1 +2µ p2)
1

α2 (αh1−2µh2)

)
x

+

( 1
α2 p2(σ2 +λ µ̂m)+

1
α3 µ(α p1 +2µ p2)

1
α2 h2(σ2 +λ µ̂m)− 1

α3 µ(αh1−2µh2)

)

≡ aaax2 +bbbx+ ccc. (21)

The constants A j, j = 1, · · · ,4, are solutions of the equations




1 1 −1 −1
β1 β2 −β3 −β4
1

η1+β1
1

η1+β2
− 1

η1+β3
− 1

η1+β4
1

η2−β1
1

η2−β2
− 1

η2−β3
− 1

η2−β4







A1
A2
A3
A4




=




c2− c1
b2−b1

1
η3

1
{2(a2−a1)−η1(b2−b1)+η2

1 (c2− c1)}
1

η3
2
{2(a2−a1)+η2(b2−b1)+η2

2 (c2− c1)}


 , (22)

where ai, bi, ci (i = 1,2) are elements of vactor aaa, bbb and ccc, respectively. Furthermore, the

policy parameters d, D, U, u and constants A j, j = 5, · · · ,8, are given by the solutions of
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the equations (16), (17) and equations




eβ1d

η1+β1
eβ2d

η1+β2
eβ3d

η1+β3
eβ4d

η1+β4

eβ1d eβ2d eβ3d eβ4d

eβ1u eβ2u eβ3u eβ4u

eβ1u

η2−β1
eβ2u

η2−β2
eβ3u

η2−β3
eβ4u

η2−β4







A5
A6
A7
A8




=




− A1
η1+β1

eβ1d− A2
η2+β2

eβ2d + 1
η1
{φ(D)+K1 + k1(D−d + 1

η1
)+χ1}

−A1eβ1d−A2eβ2d−ψ1(d)+φ(D)+K1 + k1(D−d)
−A3eβ3u−A4eβ4u−ψ2(u)+φ(U)+K2 + k2(u−U)

− A3
η2−β3

eβ3u− A4
η2−β4

eβ4u + 1
η2
{φ(U)+K2 + k2(u−U + 1

η2
)+χ2}


 (23)

where

χ1 = − 1
η2

1
{η2

1 (a1d2 +b1d + c1)−η1(2a1d +b1)+2a1}, (24)

χ2 = − 1
η2

2
{η2

2 (a2u2 +b2u+ c2)+η2(2a2u+b2)+2a2}. (25)

We present a special case in which there are no upper levels u and U . Thus, the

manager does not adjust the cash level downward when the cash balance is high. Let

u→ ∞ and set A5 = A6 = 0, the value function φ D(x) is given by

φ D(x) =





φ D(d)+ k1(d− x), if x≤ d,
A1eβ1x +A2eβ2x +A7eβ3x +A8eβ4x +ψ1(x), if d ≤ x≤ 0,
(A3 +A7)eβ3x +(A4 +A8)eβ4x +ψ2(x), if 0≤ x,

(26)

where A1, A2, A3 and A4 are solutions of the equations (22). The parameters d and D and

the values of A7 and A8 can be obtained by the solutions to the following equations;
{

φ D(d) = φ D(D) =−k1,

φ D(d)−φ D(D) = K1 + k1(D−d).
(27)

4 Numerical Example
We provide in this section numerical examples to illustrate the effect of exogenous risk

on the optimal policy for the two-level case described in equation (26). We set µ = 0.1,

σ = 0.2, λ = 3, p= 0.5, q= 0.5, η1 = 200, η2 = 300, α = 0.01, h1 = 0.1, h2 = 0.15, p1 =

0.4, p2 = 0.5, k1 = 0.2, K1 = 0.8. The optimal policy for our model is obtained by solving

the equations (27), and the parameters are d =−0.4646, D = 0.5242. Figure 1 shows the

value functions for our model and Baccarin [1]’s model, which has no exogenous risk,

as the functions of the cash level x. The form of the value function for our model (Jump

case) is unimodal with respect to x, and the expected total cost of our model is less than
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that of Baccarin [1]’s model. The thresholds for jump case are small in comparison to the

one for no-jump case: d̃ =−0.6557, D̃ = 0.8709.

The sensitivity analysis for the thresholds d and D are performed by varying differ-

ent parameters λ , η1, η2 and p, and the results are given in Figure 2 to 7. Figure 2 and

Figure 3 show that the thresholds d and D decrease with λ , which the rate of the Poisson

process. Figure 4 and Figure 5 show that d and D are decreasing in p, which the probabil-

ity of the downward jump for cash level. Figure 6 and Figure 7 indicate that the thresholds

are increasing in η1 and η2. Thus, the larger the mean of the jump size, the smaller the

value of the thresholds d and D. Moreover, we can see that the values η1 and η2 have a

large effect on the optimal policy.

- 1.0 - 0.5 0.0 0.5 1.0 1.5 2.0

20

25

30

35

Expected Total Cost

No-jump-case

Jump case

x

Ddd̃ D̃

Figure 1: Form of the vaule function

5 Concluding Remarks
In this paper we have considered the cash management model in which the cash level

suddenly increase or decrease in a large amount. It has shown that such cash management

model can be formulated as a quasi-variational inequality problem. We have derived an

explicit cost function for this model under the assumption that an optimal policy obtained

as a band policy. Then, we have investigated the effect of the exogenous risk on the opti-

mal policy. As a result, the size of the demand for exogenous risk has strong implications

for optimal policy.

In the future, we will show that the obtained value function satisfies the quasi-variational
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inequality and that the existence of the policy parameters. In addition, we would like to

apply our model to practical problem such as the management of an automated teller

machine (ATM).
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Figure 4: Optimal threshold for d with re-
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Figure 5: Optimal threshold for D with re-
spect to p.
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