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Abstract In this article, we construct a Fenchel-Lagrangian ε-dual problem for set-valued opti-
mization problems by using the perturbation methods. Some relationships between the solutions of
the primal and the dual problems are discussed. Moreover, an ε-saddle point theorem is proved.
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1 Introduction
In recent years, the vector optimization problems with set-valued maps have been

investigated by many authors. There are many papers discussing the existence results
and optimality conditions for set-valued vector optimization problems (see, for instance
[1-5]).

Duality for set-valued vector optimization problems is an important class of duality
theory. The Lagrangian duality for set-valued vector optimization problems was studied
by Li and Chen [6] and Song [7]. The conjugate duality for set-valued vector optimization
problems has been made in [8-13]. Recently, Li et al. [14] constructed three dual models
for a set-valued vector optimization problem with explicit constrains by using the method
of perturbation functions.

On the other hand, many researchers have focused on investigating the approximate
solutions of set-valued optimization problems. For example, Vlyi [15] introduced some
concepts of approximate solutions and presented an approximate saddle point theorem.
Rong and Wu [16] gave some ε-weak saddle point theorem and ε-duality results by us-
ing the Lagrangian map. Jia and Li [17] introduced the concept of ε-conjugate map for
set-valued map, constructed an ε-conjugate duality problem for set-valued vector opti-
mization problem and proved some duality results.

Motivated by the work reported in [14, 16, 17], in this paper we will propose Fenchel-
Lagrangian ε-dual model for a constraint set-valued vector optimization problem by using
the perturbation methods and derive some duality results and an ε-weak saddle point
theorem.

2 Preliminaries
Let X be a real topological vector space, Y be a real topological vector space which is

partially ordered by a pointed closed convex cone K with nonempty interior intK in Y . We
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denote by Y ∗ the topological dual space of Y . For a subset A⊂Y , we define the dual cone
of A by A∗ = {y∗ ∈ Y ∗ : 〈y∗,y〉 ≥ 0, ∀y ∈ A}. For any x,y ∈ Y , we define the following
ordering relations:

x < y⇔ y− x ∈ intK, and x 6< y⇔ y− x 6∈ intK.
Let B ⊂ Y be a nonempty subset and ε ∈ K. The set Wminε(B) of all ε-weak minimal
point and the set Wmaxε(B) of all ε-weak maximal point of B are defined by (see [16])

Wminε(B) = {b ∈ B : y+ ε 6< b,∀y ∈ B} and Wmaxε(B) = {b ∈ B : b 6< y− ε,∀y ∈ B}

respectively. Clearly, Wminε(−B) =−Wmaxε(B), and Wmaxε(−B) =−Wminε(B).
Let F be a set-valued map from X to Y , A⊂ X . We denote domF = {x∈ X : F(x) 6= /0}

and F(A) =
⋃

x∈A
F(x).

Proposition 2.1. ([17] ) Let F1 and F2 be set-valued maps from X to Y . Then

Wmaxε
⋃

x∈X

[F1(x)+F2(x)]⊂Wmaxε
⋃

x∈X

[F1(x)+Wmaxε F2(x)]. (1)

Further, if we assume that F2(x)⊂Wmaxε F2(x)−K, ∀x ∈ X , then the (1) becomes equal-
ity.

Let L(X ,Y ) be the space of all linear continuous operators from X to Y .
Definition 2.1.([17]) A set-valued map F∗ : L(X ,Y )→ 2Y defined by

F∗(T ) = Wmaxε
⋃

x∈X

[T (x)−F(x)], ∀T ∈ L(X ,Y ),

is called the ε-conjugate map of F .

3 ε-dual problem
Let X be a real topological vector space, Y and Z be two real partially ordered topolog-

ical vector spaces, K⊂Y and E ⊂ Z be two pointed closed convex cones with intK 6= /0 and
intE 6= /0. We define a subset L+(Z,Y ) of L(Z,Y ) as L+(Z,Y )= {Λ∈ L(Z,Y ) : Λ(E)⊂K}.
Let F : X → 2Y and G : X → 2Z be two set-valued maps with dom(F) 6= /0. Let S be a
subset of X with S⊂ dom(F). We consider the following set-valued optimization problem

(P) min
x∈Ω

F(x),

where Ω = {x ∈ S : G(x)∩ (−E) 6= /0}. We always assume that the feasible set Ω 6= /0.
Definition 3.1. A feasible solution x ∈Ω is said to be an ε-weak minimal solution of the
problem (P) if

F(x)∩Wminε(F(Ω)) 6= /0.

In the following, we will construct the a Fenchel-Lagrangian ε-dual model for (P) by
using the perturbation methods. We first give the Fenchel-Lagrangian map φ FL : X×X×
Z→ 2Y as

φ FL(x, p,q) =
{

F(x+ p), x ∈ S,G(x)∩ (−E−q) 6= /0,
/0, otherwise.
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By Definition 2.1, we can easily obtain the follows.

−(φ FL)∗(0,Γ,Λ) = Wminε{
⋃

r∈X

[−Γ(r)+F(r)]+
⋃

x∈S

[Γ(x)+Λ(G(x))]+Λ(E)}

for any Γ ∈ L(X ,Y ) and Λ ∈ L+(Z,Y ).
Now we define the Fenchel-Lagrangian ε-dual problem as follows

(DFL) max
⋃

Γ∈L(X ,Y )
Λ∈L+(Z,Y )

{
Wminε{

⋃

r∈X

[−Γ(r)+F(r)]+
⋃

x∈S

[Γ(x)+Λ(G(x))]+Λ(E)}
}
.

Definition 3.2. (Γ̄, Λ̄) ∈ L(X ,Y )×L+(Z,Y ) is said to be an ε-weak maximal solution of
(DFL), if

−(φ FL)∗(0, Γ̄, Λ̄)∩Wmaxε

( ⋃

Γ∈L(X ,Y )
Λ∈L+(Z,Y )

−(φ FL)∗(0,Γ,Λ)
)
6= /0.

Theorem 3.1. (ε-Weak duality) For any x ∈ Ω, Γ ∈ L(X ,Y ) and Λ ∈ L+(Z,Y ), we have
that

F(x)
⋂(

Wminε

[⋃

r∈X

[−Γ(r)+F(r)]+
⋃

x∈S

[Γ(x)+Λ(G(x))]+Λ(E)
]
− ε− intK

)
= /0.

Proof. Suppose to the contrary. Then there exist x̄ ∈ Ω, Γ̄ ∈ L(X ,Y ) and Λ̄ ∈ L+(Z,Y )
such that

F(x̄)
⋂(

Wminε [
⋃

r∈X

(−Γ̄(r)+F(r))+
⋃

x∈S

(Γ̄(x)+ Λ̄(G(x)))+ Λ̄(E)]− ε− intK
)
6= /0.

Thus there exist ȳ1 ∈ F(x̄) and

ȳ2 ∈Wminε [
⋃

r∈X

[−Γ̄(r)+F(r)]+
⋃

x∈S

[Γ̄(x)+ Λ̄(G(x))]+ Λ̄(E)] (2)

such that
ȳ1 ∈ ȳ2− ε− intK. (3)

Then, we have

ȳ2− (ȳ1− Γ̄(x̄)+ Γ̄(x̄)+ Λ̄(q)+ Λ̄(0))− ε
= ȳ2− ȳ1− ε + Λ̄(−q)
∈ intK + Λ̄(−q)
⊂ intK +K = intK

for any q ∈ G(x̄)∩ (−E). This contradicts (2). �
Now we discuss the strong duality between the primal (P) and the dual problem

(DFL). First, we define the set-valued map W : X×Z→ 2Y as

W (p,q) = Wminε
⋃

x∈X

φ FL(x, p,q).
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It is obvious that W (0,0) = Wminε
⋃

x∈Ω F(x).
Definition 3.3. Let p̄ ∈ X , q̄ ∈ Z and z̄ ∈W (p̄, q̄). (Γ,Λ) ∈ L(X ,Y )×L+(Z,Y ) is said to
be the positive ε-subgradient of W at (p̄, q̄, z̄), if

z̄−Γ(p̄)−Λ(q̄) ∈Wminε
⋃

p∈X ,q∈Z

[W (p,q)−Γ(p)−Λ(q)].

The set of all positive ε-subgradient of W at (p̄, q̄, z̄) is called the ε-subdifferential of W
at (p̄, q̄, z̄) and is denoted by ∂+

ε (p̄, q̄, z̄).
Definition 3.4. The problem (P) is said to be stable with respect to φ FL, if

∂+
ε W ((0,0),z) 6= /0, ∀z ∈W (0,0).

Theorem 3.2. Let the problem (P) be stable with respect to φ FL, x̄ be an ε-weak minimal
solution of (P) and

⋃
x∈X φ FL(x, p,q) ⊂W (p,q)+K, ∀(p,q) ∈ X ×Z. Then there exist

Γ̄ ∈ L(X ,Y ), Λ̄ ∈ L+(Z,Y ) to be the ε-weak maximal solution of (DFL) such that

F(x̄)
⋂

Wminε

[⋃

r∈X

[−Γ̄(r)+F(r)]+
⋃

x∈S

[Γ̄(x)+ Λ̄(G(x))]+ Λ̄(E)
]
6= /0. (4)

Proof. Since x̄ is an ε-weak minimal solution of (P), we have that x̄∈ S, G(x̄)∩(−E) 6= /0
and ∃ȳ ∈ F(x̄) such that

ȳ ∈Wminε
⋃

x∈Ω
F(x) = Wminε

⋃

x∈X

φ FL(x,0,0) =W (0,0).

The stability of (P) implies that ∂+
ε W ((0,0), ȳ) 6= /0. Then there exist Γ̄ ∈ L(X ,Y ) and

Λ̄ ∈ L+(Z,Y ) such that

ȳ = ȳ− Γ̄(0)− Λ̄(0) ∈Wminε
⋃

p∈X ,q∈Z

[W (p,q)− Γ̄(p)− Λ̄(q)] =−W ∗(Γ̄, Λ̄).

Since
⋃

x∈X φ FL(x, p,q) ⊂W (p,q)+K, ∀(p,q) ∈ X × Z, from Proposition 2.1 we have
that

W ∗(Γ,Λ) = (φ FL)∗(0,Γ,Λ),∀(Γ,Λ) ∈ L(X ,Y )×L+(Z,Y ),

and so ȳ ∈ −(φ FL)∗(0, Γ̄, Λ̄). Therefore, (4) is true.
On the other hand, we can show that (Γ̄, Λ̄) is the ε-weak maximal solution of (DFL).

For any y∈⋃ Γ∈L(X ,Y )
Λ∈L+(Z,Y )

{
−(φ FL)∗(0,Γ,Λ)

}
, there exists (Γ̃, Λ̃)∈ L(X ,Y )×L+(Z,Y ) such

that
y ∈ −(φ FL)∗(0, Γ̃, Λ̃) =−W ∗(Γ̃, Λ̃).

Since W ∗(Γ̃, Λ̃) =Wmaxε
⋃

p∈X ,q∈Z [Γ̃(p)+Λ̃(q)−W (p,q)] and−ȳ∈−W (0,0), we have
that

−y 6<−ȳ− ε,

which is equivalent to ȳ 6< y−ε . Thus (Γ̄, Λ̄) is an ε-weak maximal solution of (DFL). �
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Theorem 3.3. Let (x̄, Γ̄, Λ̄) ∈Ω×L(X ,Y )×L+(Z,Y ). If there exists ȳ ∈ Y , such that

ȳ ∈ F(x̄)
⋂

Wminε

[⋃

r∈X

[−Γ̄(r)+F(r)]+
⋃

x∈S

[Γ̄(x)+ Λ̄(G(x))]+ Λ̄(E)
]
. (5)

Then x̄ is an ε-weak minimal solution of (P) and (Γ̄, Λ̄) is an ε-weak maximal solution of
(DFL).
Proof. From Theorem 3.1, we have that, for any (x,Γ,Λ) ∈Ω×L(X ,Y )×L+(Z,Y ),

F(x)
⋂(

Wminε

[⋃

r∈X

[−Γ(r)+F(r)]+
⋃

x∈S

[Γ(x)+Λ(G(x))]+Λ(E)
]
− ε− intK

)
= /0.

(6)
If x̄ is not an ε-weak minimal solution of (P), then there exists ỹ ∈ ⋃x∈Ω F(x), such that
ỹ+ ε < ȳ, which together with (5) shows that

ỹ ∈ ȳ− ε− intK ⊂Wminε

[⋃

r∈X

[−Γ̄(r)+F(r)]+
⋃

x∈S

[Γ̄(x)+ Λ̄G(x)]+ Λ̄(E)
]
− ε− intK.

This contradicts (6). Hence x̄ is an ε-weak minimal solution of (P).
If (Γ̄, Λ̄) is not an ε-weak maximal solution of (DFL), then there exists(Γ̃, Λ̃)∈L(X ,Y )×

L+(Z,Y ) with z̃ ∈Wminε

[⋃
r∈X [−Γ̃(r)+F(r)]+

⋃
x∈S[Γ̃(x)+ Λ̃G(x)]+ Λ̃(E)

]
such that

ȳ < z̃− ε . Hence,

ȳ ∈ z̃− ε− intK ⊂Wminε

[⋃

r∈X

[−Γ̄(r)+F(r)]+
⋃

x∈S

[Γ̄(x)+ Λ̄G(x)]+ Λ̃(E)
]
− ε− intK.

This contradicts (6). Hence (Γ̄, Λ̄) is an ε-weak maximal solution of (DFL). �

4 Lagrangian map and saddle point
In this section, we introduce a Lagrangian map for (P), which is different from that in

[16], and propose an ε-saddle point theorem.
Definition 4.1. The set-valued map L : S×L(X ,Y )×L+(Z,Y )→ 2Y , defined by

L(x,Γ,Λ) =
⋃

r∈X

[−Γ(r)+F(r)]+Γ(x)+Λ(G(x))+Λ(E)

is called the Lagrangian map of the problem (P) relative to the perturbation map φ FL.
Definition 4.2. A point (x̄, Γ̄, Λ̄) ∈ S×L(X ,Y )×L+(Z,Y ) is called an ε-saddle point of
L(x,Γ,Λ), if

L(x̄, Γ̄, Λ̄)∩Wmaxε
⋃

Γ∈L(X ,Y )
Λ∈L+(Z,Y )

L(x̄,Γ,Λ)∩Wminε
⋃

x∈S

L(x, Γ̄, Λ̄) 6= /0.

Theorem 4.1. A point (x̄, Γ̄, Λ̄) ∈ S× L(X ,Y )× L+(Z,Y ) is an ε-saddle point of La-
grangian map L(x,Γ,Λ) if and only if there exist ȳ∈⋃r∈X [−Γ̄(r)+F(r)] and z̄∈G(x̄)+E
such that the following conditions hold:
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(a) ȳ+ Γ̄(x̄)+ Λ̄(z̄) ∈Wminε
⋃

x∈S
L(x, Γ̄, Λ̄);

(b) −Λ̄(z̄) ∈ K\(ε + intK);
(c) G(x̄)+E ⊂−E;

(d)
(⋃

r∈X [−Γ(r)+F(r)]+Γ(x̄)− ȳ− Γ̄(x̄)− Λ̄(z̄)− ε
)⋂

intK = /0, ∀Γ ∈ L(X ,Y ).

Proof. “⇒ ” (x̄, Γ̄, Λ̄) ∈ S×L(X ,Y )×L+(Z,Y ) is an ε-saddle point of the Lagrangian
map L(x,Γ,Λ). Then there exist ȳ ∈ ∪r∈X [−Γ̄(r)+F(r)] and z̄ ∈ G(x̄)+E such that

ȳ+ Γ̄(x̄)+ Λ̄(z̄) ∈Wminε
⋃

x∈S

L(x, Γ̄, Λ̄), (7)

ȳ+ Γ̄(x̄)+ Λ̄(z̄) ∈Wmaxε
⋃

Γ∈L(X ,Y )
Λ∈L+(Z,Y )

L(x̄,Γ,Λ). (8)

This shows that condition (a) is true and for all Γ ∈ L(X ,Y ) and Λ ∈ L+(Z,Y ),
[⋃

r∈X

[−Γ(r)+F(r)]+Γ(x̄)+Λ(G(x̄))+Λ(E)− (ȳ+ Γ̄(x̄)+ Λ̄(z̄)+ε)
]⋂

intK = /0. (9)

Taking Γ = Γ̄ in (9), we have
[⋃

r∈X

[−Γ̄(r)+F(r)]+Λ(G(x̄))+Λ(E)− (ȳ+ Λ̄(z̄)+ ε)
]⋂

intK = /0, ∀Λ ∈ L+(Z,Y ).

Since ȳ ∈ ∪r∈X [−Γ̄(r)+F(r)], we have that

Λ(z)− Λ̄(z̄)− ε 6∈ intK, ∀Λ ∈ L+(Z,Y ), ∀z ∈ G(x̄)+E. (10)

Suppose that −z̄ 6∈ E. Since the convex cone E is closed, we have that E = E∗∗. Hence,
there exists λ̄ ∈E∗, such that 〈z̄, λ̄ 〉> 0. For any fixed k̃∈ intK, we define a map Λ̃ : Z→Y
as

Λ̃(z) =
〈z, λ̄ 〉
〈z̄, λ̄ 〉

(k̃+ ε)+ Λ̄(z).

We can easy see that Λ̃ ∈ L+(Z,Y ) and Λ̃(z̄)− Λ̄(z̄)− ε = k̃ ∈ intK, which contradicts
(10). Hence,−z̄∈ E and so−Λ̄(z̄)∈K. Taking Λ = 0 in (10), we have−Λ̄(z̄)−ε 6∈ intK.
Therefore −Λ̄(z̄) ∈ K\(ε + intK).

Next, we will prove that G(x̄)+E ⊂ −E. Suppose to the contrary that there exists
z0 ∈ G(x̄)+E such that −z0 6∈ E. We can find λ0 ∈ E∗ such that 〈λ0,z0〉> 0. Taking any
fixed k0 ∈ intK, let Λ0(z) =

〈z,λ0〉
〈z0,λ0〉 (k0+ε). Obviously, Λ0 ∈ L+(Z,Y ) and Λ0(z0)−Λ̄(z̄)−

ε = k0− Λ̄(z̄) ∈ intK +K = intK, which contradicts (10). Therefore, G(x̄)+E ⊂−E.
Taking Λ = 0 in (9), we have that condition (d) holds.
“⇐ ” From condition (d), we have that

y+Γ(x̄)− (ȳ+ Γ̄(x̄)+ Λ̄(z̄)+ ε) 6∈ intK, ∀Γ ∈ L(X ,Y ), ∀y ∈ ∪r∈X [−Γ(r)+F(r)].
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Condition (c) shows that −Λ(z) ∈ K for any z ∈ G(x̄)+E and Λ ∈ L+(Z,Y ). Then, one
can easy obtain that for all Γ ∈ L(X ,Y ) and Λ ∈ L+(Z,Y ),

y+Γ(x̄)+Λ(z)− (ȳ+ Γ̄(x̄)+ Λ̄(z̄)+ε) 6∈ intK, ∀y ∈
⋃

r∈X

[−Γ(r)+F(r)], ∀z ∈G(x̄)+E.

That is to say
ȳ+ Γ̄(x̄)+ Λ̄(z̄) ∈Wmaxε

⋃

Γ∈L(X ,Y )
Λ∈L+(Z,Y )

L(x̄,Γ,Λ),

which together with condition (a) shows that (x̄, Γ̄, Λ̄) is an ε-saddle point of the La-
grangian map L(x,Γ,Λ). �
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