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Abstract In this article, we construct a Fenchel-Lagrangian &-dual problem for set-valued opti-
mization problems by using the perturbation methods. Some relationships between the solutions of
the primal and the dual problems are discussed. Moreover, an £-saddle point theorem is proved.
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1 Introduction

In recent years, the vector optimization problems with set-valued maps have been
investigated by many authors. There are many papers discussing the existence results
and optimality conditions for set-valued vector optimization problems (see, for instance
[1-5]).

Duality for set-valued vector optimization problems is an important class of duality
theory. The Lagrangian duality for set-valued vector optimization problems was studied
by Li and Chen [6] and Song [7]. The conjugate duality for set-valued vector optimization
problems has been made in [8-13]. Recently, Li et al. [14] constructed three dual models
for a set-valued vector optimization problem with explicit constrains by using the method
of perturbation functions.

On the other hand, many researchers have focused on investigating the approximate
solutions of set-valued optimization problems. For example, Vlyi [15] introduced some
concepts of approximate solutions and presented an approximate saddle point theorem.
Rong and Wu [16] gave some &-weak saddle point theorem and €-duality results by us-
ing the Lagrangian map. Jia and Li [17] introduced the concept of €-conjugate map for
set-valued map, constructed an e-conjugate duality problem for set-valued vector opti-
mization problem and proved some duality results.

Motivated by the work reported in [14, 16, 17], in this paper we will propose Fenchel-
Lagrangian e-dual model for a constraint set-valued vector optimization problem by using
the perturbation methods and derive some duality results and an &-weak saddle point
theorem.

2 Preliminaries

Let X be a real topological vector space, Y be a real topological vector space which is
partially ordered by a pointed closed convex cone K with nonempty interior intK in Y. We
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denote by Y* the topological dual space of Y. For a subset A C Y, we define the dual cone
of Aby A* ={y* € Y*: (y",y) >0, Vy € A}. For any x,y € Y, we define the following
ordering relations:

x<yey—x€ intK,andx £y y—x ¢ intK.
Let B C Y be a nonempty subset and € € K. The set Wming(B) of all e-weak minimal
point and the set Wmax, (B) of all e-weak maximal point of B are defined by (see [16])

Wming (B) ={b€B:y+¢€ £ b,Vyc B} and Wmaxe(B) ={beB:b£y—¢,VycB}

respectively. Clearly, Wming (—B) = —Wmax(B), and Wmax,(—B) = —Wming(B).
Let F be a set-valued map from X to Y, A C X. We denote domF = {x € X : F(x) # 0}
and F(A) = U F(x).

XEA

Proposition 2.1. ([17] ) Let F| and F> be set-valued maps from X to Y. Then

Wmax, U [F1(x) 4+ F>(x)] C Wmaxe U [F1 (x) + WmaxgF> (x)]. (1)
xeX xeX
Further, if we assume that F>(x) C WmaxgF»(x) — K, Vx € X, then the (1) becomes equal-
ity.
Let L(X,Y) be the space of all linear continuous operators from X to Y.
Definition 2.1.([17]) A set-valued map F* : L(X,Y) — 27 defined by

F*(T) =Wmax, | J[T(x) - F(x)], VT € L(X,Y),
xeX

is called the &-conjugate map of F.

3 &-dual problem

Let X be areal topological vector space, Y and Z be two real partially ordered topolog-
ical vector spaces, K C Y and E C Z be two pointed closed convex cones with intK # @ and
intE # 0. We define a subset L™ (Z,Y) of L(Z,Y)as LT (Z,Y)={A € L(Z,Y): A(E) CK}.
Let F: X —2Y and G : X — 2% be two set-valued maps with dom(F) # 0. Let S be a
subset of X with S C dom(F). We consider the following set-valued optimization problem

(P) minF(x),
xeQ
where Q = {x € S: G(x) N (—E) # 0}. We always assume that the feasible set Q # 0.
Definition 3.1. A feasible solution x € Q is said to be an €-weak minimal solution of the
problem (P) if
F(x)NWming (F(Q)) # 0.

In the following, we will construct the a Fenchel-Lagrangian €-dual model for (P) by
using the perturbation methods. We first give the Fenchel-Lagrangian map ¢ : X x X x
Z—2Y as

oL [ F(x+p), x€85,Gx)N(—E—q)#0,
¢ (X,Pa‘I)—{ 0, otherwise.
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By Definition 2.1, we can easily obtain the follows.

—(¢")*(0,T,A) = Wmine { | [-T'(r) + F (r)] + | J [T (x) + A(G(x))] + A(E)}
reX xeS
forany '€ L(X,Y)and A € LT (Z,Y).
Now we define the Fenchel-Lagrangian €-dual problem as follows

(0™ max | {Wmine{J [-T() + F ()] + D) + AGE)] +AE)} .
TeL(X,Y) reX xes
AeLt(z)Y)

Definition 3.2. (I',A) € L(X,Y) x L*(Z,Y) is said to be an e-weak maximal solution of
(DFE), it

~(0™ O A) NWmaxe () ~(0™)"(0.1,A)) £0.
TeL(X.Y)
AeLT(Z,Y)

Theorem 3.1. (¢-Weak duality) For any x € Q, T’ € L(X,Y) and A € L*(Z,Y), we have
that

Fx)( (Wmine [ UI=T() + F(n)]+ [T (x) + A(G(x))] +A(E)} e imK) —0.

reX xes

Proof. Suppose to the contrary. Then there exist ¥ € Q, '€ L(X,Y) and A € L™(Z,Y)
such that

FEN (Wmine[U (—T(r) +F(m) + | J(T(x) + A(G(x))) + A(E)] — e — intK) £0.

reX x€S

Thus there exist y; € F(X) and

2 € Wming [ J[-T(r) + F(r)] + [ J T (x) + A(G(x))] + A(E)] 2)
reX xes
such that
y1 € y» — € —intK. 3)

Then, we have

Fa— (1 —T(®) +I(E) +Alg) +A(0)) —¢
=5 -y —€+A(—q)

€ intK +A(—q)

C intK + K =intK

for any ¢ € G(%) N (—E). This contradicts (2). O

Now we discuss the strong duality between the primal (P) and the dual problem
(DFL). First, we define the set-valued map W : X x Z — 2 as

W(pvq) = Wmin&' U ¢FL(x7p7q)'

xeX
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It is obvious that W (0,0) = Wming Uy,cq F(x).
Definition 3.3. Let p€ X, g€ Zand z€ W(p,g). (T,A) € L(X,Y) x LT (Z,Y) is said to
be the positive €-subgradient of W at (5,4,2), if

Z-T(p) —A(g) € Wmine | J [W(p,q) —T(p) —A(q)]-
peEX ,.qeZ

The set of all positive e-subgradient of W at (5,4,2) is called the e-subdifferential of W
at (p,g,7) and is denoted by 9, (p,q,7).
Definition 3.4. The problem (P) is said to be stable with respect to ¢*~, if

97 W((0,0),z) #0, Vz € W(0,0).

Theorem 3.2. Let the problem (P) be stable with respect to ¢/, % be an £-weak minimal
solution of (P) and Uyex ¢"*(x,p,q) C W(p,q) + K, ¥(p,q) € X x Z. Then there exist
T eL(X,Y),A€L(Z,Y) to be the e-weak maximal solution of (D*Z) such that

FE\Wmine | | [-T() + F()]+ UL + AGE) +AE)] £0. @)

reX xeS

Proof. Since ¥ is an €-weak minimal solution of (P), we have that X € S, G(X) N (—E) # 0
and 3y € F(X) such that

¥ € Wming | F(x) = Wming ] ¢"*(x,0,0) = W(0,0).

xeQ xeX

The stability of (P) implies that 95 W ((0,0),5) # 0. Then there exist I' € L(X,Y) and
A € LY (Z,Y) such that

y=y-0(0)~A(0) € Wmine | J [W(p,q)~T(p)—Alg)]=-W"([.A).
peX.qeZ

Since Uyex ¢75(x, p,q) € W(p,q) + K, ¥(p,q) € X x Z, from Proposition 2.1 we have
that
W*(T,A) = (¢F5)*(0,T,A),Y(I',A) € L(X,Y) x LY (Z,Y),

and so y € —(¢7L)*(0,T,A). Therefore, (4) is true.
On the other hand, we can show that (T, A) is the e-weak maximal solution of (D'L).
Forany y € U recxr) { —(¢FL)*(0,T, A)} there exists ([, A) € L(X,Y) x L*(Z,Y) such

AeLt(Z)Y)
that

ye _(¢FL)*(07F7;\) = _W*(f‘vl’v\)

Since W*(I",A) = Wmax¢ U pex 4ez[E(p) +Ag) =W (p,q)] and —5 € =W (0,0), we have
that
-y £ —y—§,

which is equivalent to 7 £ y — €. Thus (I, A) is an €-weak maximal solution of (D). O
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Theorem 3.3. Let (¥,T,A) € Q x L(X,Y) x L*(Z,Y). If there exists j € Y, such that

FeF(F ﬂwlmns[u[ (N+F()]+ T +AG)N+AE)]. 6

reX xeS

Then % is an e-weak minimal solution of (P) and (T',A) is an e-weak maximal solution of
(DFL).
Proof. From Theorem 3.1, we have that, for any (x,I',A) € Q x L(X,Y) x L*(Z.,Y),

F(x)) (Wming [ U-T() +F(r)]+ TR +AGH)] + A(E)} P intK) — 0.

reX x€S
(6)

If X is not an €-weak minimal solution of (P), then there exists ¥ € [J,co F (x), such that
¥4 € < ¥, which together with (5) shows that

yey—s—ichwming[U[ +JIF) +AG(x ]—s—A(E)}—e—intK.
reX x€S
This contradicts (6). Hence ¥ is an £-weak minimal solution of (P).
If (T, A) is not an e-weak maximal solution of (DL), then there exists(I", A) € L(X,Y) x
L*(Z,Y) with Z € Wming [U,Ex[ () + F(r)] + Uyes [T (x) + AG(x)] +Z\(E)] such that
y < 7— €. Hence,

yEZ—s—intKCWming{U[ + () +AG(x ]+Z\(E)}—s—intl<.
reX xes

This contradicts (6). Hence (', A) is an e-weak maximal solution of (Df%). [

4 Lagrangian map and saddle point

In this section, we introduce a Lagrangian map for (P), which is different from that in
[16], and propose an €-saddle point theorem.

Definition 4.1. The set-valued map L: S x L(X,Y) x L*(Z,Y) — 2¥, defined by

L(x,T,A) = | J[-T(r) + F(r)] + I'(x) + A(G(x)) + A(E)

reX

is called the Lagrangian map of the problem (P) relative to the perturbation map ¢*~.
Definition 4.2. A point (¥,I,A) € S x L(X,Y) x L™(Z,Y) is called an e-saddle point of
L(x,T,A), if

L(xT,A)nWmax, ) L(xT,A)NnWming | JL(x,T,A) #0.

TeL(X,Y) xes
AeLT(Z,Y)

Theorem 4.1. A point (¥,I,A) € S x L(X,Y) x L*(Z,Y) is an e-saddle point of La-
grangian map L(x,T’, A) if and only if there exist y € J,ex[~L(r)+F(r)] and Z € G(X) + E
such that the following conditions hold:
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(@) y+T(x) +A(Z) € Wming U L(x,T,A);
xes

(b) —A(Z) € K\ (& +intK);
(¢) G(¥)+E C —E;
(@ (Upex [=T() + F ()] +T(8) = 5 (%) — A(2) — ) Nintk =0, ¥T" € L(X, ).

Proof. “ =" (¥,,A) € S x L(X,Y) x L*(Z,Y) is an &-saddle point of the Lagrangian
map L(x,I,A). Then there exist § € U,ex [~ '(r) + F(r)] and Z € G(¥) + E such that

7+T(%¥) + A(z) € Wming | J L(x,T, A), (7
xes
7+T(®) +A(Z) e Wmaxe | ] L(ET,A). (8)
TeL(X.Y)
AeLt(zY)

This shows that condition () is true and forall " € L(X,Y) and A € L (Z,Y),

[ U[=T(r) +F ()] +T(E) + A(G(®) + A(E) — G+ T(®) + AZ) + e)} itk = 0. (9)

reX

Taking ' =T in (9), we have

[ UI-E() +F(r)] + A(GE) + A(E) — 5 +A(R) + e)} Nintk =0, YA € L*(Z,Y).

reX
Since y € Uyex[—I(r) + F(r)], we have that
A(z) —AEZ)—edintk, VA€ LT (Z,Y), Vz € G(X) +E. (10)

Suppose that —zZ ¢ E. Since the convex cone E is closed, we have that E = E**. Hence,
there exists A € E*, such that (Z,A) > 0. For any fixed k € intK, we defineamap A: Z —Y
as

A =2 @ re) A,
(&4)
We can easy see that A € LT(Z,Y) and A(Z) — A(Z) — &€ = k € intK, which contradicts
(10). Hence, —Z € E and so —A(Z) € K. Taking A = 0 in (10), we have —A(Z) — € & intK.
Therefore —A(Z) € K\ (€ + intK).
Next, we will prove that G(X) + E C —E. Suppose to the contrary that there exists
20 € G(X) + E such that —zy € E. We can find Ay € E* such that (Ag,z9) > 0. Taking any

fixed ko € intK, let Ag(z) = {222 (ko +&). Obviously, Ag € L*(Z,Y) and Ao(20) — A(2) —
€ = ko —A(Z) € intK + K = intK, which contradicts (10). Therefore, G(¥) + E C —E.
Taking A = 0 in (9), we have that condition (d) holds.

“ <" From condition (d), we have that

y+T(x) - (F+T(F) +A(Z) +¢e) gintK, VL € L(X,Y), ¥y € Upex[-T(r) + F(7)].
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Condition (c) shows that —A(z) € K for any z € G(x) + E and A € L*(Z,Y). Then, one
can easy obtain that forall T € L(X,Y) and A € LT (Z,Y),

Yy+I(E) +A(z) - (5+T(%) +AEZ) +€) gintK, Vye | J[-T(r)+F(r)], Vz€ G(x) +E.
reX
That is to say . .
§+T(®) +A(z) e Wmaxe ] L(ET,A),
TeL(X.Y)
AeLt(z)Y)
which together with condition (a) shows that (¥,I’,A) is an &-saddle point of the La-
grangian map L(x,I',A). O
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