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Abstract We present a cost-sharing method that is cross-monotonic, competitive, and approxi-
mate cost recovery, for the multi-level economic lot-sizing game, under a mild condition. This
result extends that of the recent 1-level economic lot-sizing game of Xu and Yang (2009).
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1 Introduction
Multi-level economic lot-sizing models have been extensively investigated under con-

siderably different multi-level structure assumptions in the literature (c.f., [6, 7, 17]). The
model we are interested in is similar to those in [7, 17]. However, the multi-level sys-
tem of this paper will be analyzed as an economic lot-sizing system with backlogging
demand permitted (i.e., unfulfilled demands can be met later). In this multi-level system,
the manufacturing of the final product requires several different processes. Each process
is assumed to take place in exactly one level or facility. Adopting the convention that
finished goods belong to level 0, intermediate products are then numbered from 1 to k,
starting from level 0 and all the way to the lowest level k. The objective is to determine
the production schedule in each level such that all demands are fulfilled and total cost is
minimized.
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To formally describe the problem, we need the following notations.

T : total number of periods;
dt : the amount of demand at period t;
xi,t : the processed quantity of level i at period t;
Ii,t : the inventory quantity of level i at period t;
ri,t : the amount of backlogged demand for level i at period t;
hi,t : the unit holding cost of level i at period t;
gi,t : the unit backlogging cost of level i at period t;
pi,t : the unit producing cost of level i at period t;
fi,t : the setup cost of level i at period t.

Then the multi-level economic lot-sizing problem (MLELSP) can be formulated as the
following mathematical programming:

C(d) := min
T
∑

t=1

k
∑

i=1
{ fi,tδ (xi,t)+ pi,txi,t +hi,t Ii,t +gi,tri,t}

s.t. Ii,0 = Ii,T = ri,0 = ri,T = 0, ∀i = 1, · · · ,k,
xi,t + Ii,t−1− ri,t−1 = xi−1,t + Ii,t − ri,t , ∀t = 1, · · · ,T ; i = 2, · · · ,k,
x1,t + I1,t−1− r1,t−1 = dt + I1,t − r1,t , ∀t = 1, · · · ,T,
xi,t ≥ 0, Ii,t ≥ 0, ∀t = 1,2, · · · ,T ; i = 1, · · · ,k,

where d = (d1,d2, · · · ,dT )
T is the demand vector and

δ (x) =
{

1, if x > 0;
0, otherwise.

In this paper, we consider the cooperative game associated with the above MLELSP.
We consider the situation with multiple manufacturers supplying the same product. In a
decentralized system, each manufacturer would solve a MLELSP. However, by exploit-
ing economies of scale, the manufacturers may find it beneficial to form coalitions and
make joint production, leading to the multi-level economic lot-sizing game (MLELSG), a
cooperative game with the players being manufacturers. In cooperative game theory, the
central problem is to develop cost allocations that are advantageous to all manufacturers,
i.e., no manufacturer(s) have an incentive to secede.

Formally, consider a set of manufacturers N = {1,2, · · · ,n}, who produce the same
goods to meet their demands. For each l ∈ N, let dl = (dl

1,d
l
2, · · · ,dl

T )
T be the known

demand vector of player l. For any given subset of players J ⊂ N, let dJ be the demand
vector of J. We assume that all costs for each manufacturer are fixed in a single period.
The manufacturers can produce either individually or jointly by keeping inventory at one
warehouse, resulting in the MLELSG, specified by (N,V ), where the grand coalition is
the set of manufacturers N, and the characteristic cost function V (J) =C(dJ),J ⊂ N. The
objective is to design a cost-sharing method that allocates the total cost to the different
players, that is, computes the cost share η(J, j) for each player j ∈ J.

We are interested in cost sharing methods that satisfy fairness, group-strategyproof,
cross-monotonicity, competitiveness and approximate cost recovery. Fairness implies that
no subset I of coalition is charged more than the cost of subset I, i.e., ∑ j∈I η(J, j) ≤
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V (I), ∀I ⊂ J. A cost-sharing method is group-strategyproof if players has no incen-
tive to collude. It is said to be cross-monotonic if the cost share of each player never
goes up as the set of participating players increases, that is η(J, j) ≥ η(S, j) for all
j ∈ J ⊂ S. It is competitive if the players are charged no more than the true cost, i.e.,
∑ j∈J η(J, j) ≤ V (J). And further, if ∑ j∈J η(J, j) ≥ V (J)/γ , where γ ≥ 1, the cost shar-
ing method is γ-approximate cost recovering . It is exact cost recovering if γ = 1. It
follows from Pál and Tardos [10] that competitiveness and cross-monotonicity together
imply fairness. Moulin and Shenker [9] show that cross monotonic cost-sharing leads to
group strategyproof mechanisms. So it is sufficient to devise an approximate cost recov-
ery cost-sharing method that is cross-monotonic and competitive.

Van den Heuvel et al. [11] analyze a special case of the 1-level ELS game, where
backlogging is not allowed and the ordering cost includes a fixed setup cost and a linear
cost. They show for this special case that the core is always nonempty. Chen and Zhang
[4] focus on the core of the 1-level ELS game under more general conditions by allowing
for backlogging and concave ordering cost. They show that an allocation in the core can
be computed in polynomial time by solving a linear program. Utilizing the equivalence
between the economic lot-sizing problem and the facility location problem (FLP) [12],
Xu and Yang [14] propose a cross-monotonic competitive 3β -approximate cost-sharing
method for the 1-level ELS game, where β ≥ 1 is a constant. Yang et al. [16] present a
cost-sharing method for the soft-capacitated ELS game.

It is well-known that the MLELSP can be equivalently formulated as the k-level FLP
[12]. We review briefly the literature about the k-level FLP and its associated games.
Aardal et al. [1] show that the k-level FLP can be solved within a factor of 3 by a linear
programming (LP) rounding algorithm, and later Zhang [18] improves this result to 1.77
for the 2-level FLP. The best combinatorial algorithm with a performance factor of 3.27
for the k-level FLP is due to Ageev et al. [2]. Xu and Du [13] present a 6-approximate
cost-sharing method for the k-level facility location game. With respect to the basic FLP
and its variants, we refer to [3, 5, 8, 15, 19] and the references therein.

The main contribution of this paper is to develop a cost-sharing method for the MLELSG
that is cross-monotonic, competitive, and 2β (2β + 1)-approximate cost recovery, where
β ≥ 1 is a constant and will be addressed at Assumption 1. The rest of the paper is orga-
nized as follows. We present our algorithm and its analysis in Section 2. Some discussions
are offered in Section 3.

2 The cost-sharing method
In this section, we present our cross-monotonic cost-sharing method for the MLELSG

by adopting the ghost-process, developed first in [10].
For any coalition J, the characteristic cost function V (J) is the optimal value of the
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following integer program.

V (J) := min
T
∑

t=1
∑

p∈℘
dJ

t q(t p)xt p +
k
∑

i=1

T
∑

si=1
fi,siyi,si

s.t. ∑
p∈℘

xt p = 1, ∀t = 1, · · · ,T,

∑
p:(i,si)∈p

xt p ≤ yi,si , ∀t,si = 1, · · · ,T ; i = 1, · · · ,k

xt p ∈ {0,1}, ∀p ∈℘, t = 1, · · · ,T,
yi,si ∈ {0,1}, ∀si = 1, · · · ,T ; i = 1, · · · ,k.

(1)

In the above program, q(t p) is the cost of satisfying one unit demand at period t by the
production schedule p = {(1,s1),(2,s2), · · · ,(k,sk)}, namely,

q(t p) = ct,s1 +
k−1

∑
i=1

csi,si+1 = ct,s1 + c(p),

csi−1,si =





pi,si +
si−1−1

∑
s=si

hi,s, if si ≤ si−1,

pi,si +
si−1
∑

s=si−1

gi,s, otherwise,

where i = 1, · · · ,T and s0 = t. In addition, the indicator variable xt p = 1 if and only if
the demand at period t is satisfied by p, and yi,si = 1 if and only if a batch of productions
is processed at period si in level i. The first constraint of problem (1) indicates that the
demand at each period must be met by some production schedule p, and the second one
shows that if the demand at period t is supplied by production period si in level i, then a
production batch is processed at this production period.

The dual of the linear program relaxation of (1) is

max
T
∑

t=1
αtdJ

t

s.t. αt − ∑
si∈p

θsi,t ≤ q(t p), ∀p ∈℘, t = 1, · · · ,T,
T
∑

t=1
dJ

t θsi,t ≤ fi,si , ∀si = 1, · · · ,T ; i = 1, · · · ,k,
θsi,t ≥ 0, ∀t,si = 1, · · · ,T ; i = 1, · · · ,k.

Let T̄ = {1, · · · ,T}. For any si, t ∈ T̄ , we always use si as a possible production period
in level i and t as a time period. Finally we denote by psk a production path with the ending
production period sk of level k. In order to present our algorithm, we define the following
notations:

q(sk,s′k) = min
t∈T̄ ,psk ,ps′k

∈℘
q(t psk)+q(t ps′k

), q(sk, t) = min
psk∈℘

q(t psk).

In general, the quantities defined in the above may not satisfy the following triangle in-
equalities

q(sk, t)≤ q(s′k, t)+q(sk,s′k), and ct,s1 ≤ q(t psi)+q(t p′si
)
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where two paths psi , p′si
are respectively defined by

psi = {(1,s1),(2,s2), · · · ,(i,si)} , and p′si
=
{
(1,s′1), · · · ,(i−1,s′i−1),(i,si)

}
. (2)

Since the triangle inequalities are important for the analysis of our algorithm, we impose
the following mild condition for the rest of the paper.
Assumption 1. For any t, t ′ ∈ T̄ , i, l = 0,1, · · · ,k, we assume that hl,t ≤ βhi,t , gl,t ≤ βgi,t ,
1
β gi,t ≤ hi,t ≤ βgi,t , pi,t ′ ≤ β pi,t , where β ≥ 1 is a constant.

Assumption 1 implies the following simple observation.

Lemma 1. For any possible production periods sk,s′k in level k, any time periods t, t ′, we
have

q(sk, t)≤ β
(
q(s′k, t)+q(sk, t ′)+q(s′k, t

′)
)
,

ct,s1 ≤ β
(
q(t psi)+q(t p′si

)
)
,

where two paths psi , p′si
are the same as (2).

From the arbitrariness of t ′ in Lemma 1 and the definition of q(sk,s′k), we obtain the
weak triangle inequality

q(sk, t)≤ β
(
q(s′k, t)+q(sk,s′k)

)
.

Now we present our algorithm as follows.

Algorithm 1

Step 1 (The ghost process) We introduce the notion of time t̃ advancing from 0 to +∞.
The ghost of demand period t is a ball centered at t with radius t̃ at time t̃. The
contribution of the ghost of demand period t towards filling the production period
(i,si) is θsi,t which will be updated over time t̃. Set θsi,t = 0 at time t̃ = 0.

• A production period (i,si) is said to be fully paid at some time t̃(i,si) if
T
∑

t=1
dJ

t θsi,t = fi,si . Now it is time to leave the production period (i,si) for each

demand period t with θsi,t > 0.

• A path is fully paid if and only if every production period on the path is fully
paid.

• The ghost of demand period t is said to touch production period (i,si)(1≤ i≤
k) at time t̃, if q(t p)+

i−1
∑

l=1
θsl ,t = t̃ for some fully paid path p= {(1,s1), · · · ,(i,si)}.

When the ghost of demand period t touches a fully paid production period
(i,si) at time t̃, the time t̃ is also called the moment that the ghost t leaves the
production period (i,si). And further, if the ghost of demand period t touches
a production period (i,si) that is not fully paid at time t̃, we start increasing
θsi,t with unit speed.
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Step 2 (The cost shares) Let Ri,si = {t ∈ T̄ |θsi,t > 0} be the set of demand periods that
contribute towards filling the production period (i,si). The successor of (i,si) is the
production period in level i− 1 through which (i,si) is touched by a ghost for the
first time, i.e., succe(i,si) := arg min

si−1∈T̄
t̃(i− 1,si−1)+ c(si,si−1). The successor of

(1,s1) is its closest demand period. For any production period (k,sk), we say that
p(sk) = {(1,s1), · · · ,(k,sk)} is the associated path of (k,sk) if (l,sl) = succe(l +
1,sl+1)(l = 1, · · · ,k−1). The neighborhood of (k,sk) is the set of demand periods
contributing to the associated path p(sk), denoted as
N(k,sk) = {t ∈ T̄ |θsi,t > 0, for some (i,si) ∈ p(sk)}. Let

αt = min



 min

t /∈N(k,sk)
min

psk∈℘


q(t psk)+ ∑

(i,si)∈psk

θsi,t


 , min

t∈N(k,sk)
t̃(k,sk)



 .

The cost share of each player j ∈ J is η(J, j) =
T
∑

t=1
d j

t αt .

Step 3 (The production periods) Sort all the possible production periods of level k in
a nondecreasing order of the fully paid time t̃(k,sk). According to this order, we
open the production period (k,sk) and the associated path p(sk) if and only if there
is no already open production period (k,s′k) such that q(sk,s′k)≤ 3t̃(k,sk).

Step 4 (The demands assignment) Suppose that (k,sk) is open, we assign the demand
in N(k,sk) to the associated path. The remaining demands will be assigned to the
closest open path.

One can show that Algorithm 1 is a well-defined polynomial time combinatorial algo-
rithm. The cross-monotonic cost share is given at Steps 1 and 2 of Algorithm 1. In order
to bound the approximate factor of cost recovery, we construct a primal integer feasible
solution of problem (1) at Steps 3 and 4 of Algorithm 1.

Theorem 2. The cost share generated by Algorithm 1 is a 2β (2β + 1)-approximate,
cross-monotonic, and competitive cost-sharing method for the MLELSG.

A thorough proof of Theorem 2 will appear in the full version of the paper.

3 Discussions
In this paper, we design a cost-sharing strategy for the MLELSG that is cross-monotonic,

competitive, and 2β (2β +1)-approximate cost recovery. This result extends some exist-
ing ones in the literature. When β = 1, MLELSG is equivalent to the metric k-FLG,
and the 6-approximate cost recovery method for k-FLG in Xu and Du [13] is therefore a
special case of our approximate factor. Moreover, since MLELSG contains 1-ELSG as
a special case, Algorithm 1 also extends the work of Xu and Yang [14]. As for future
research, one potential is to consider the ELSG with general concave ordering cost.
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