The Tenth International Symposium on Operations Research and Its Applications (ISORA 2011)
Dunhuang, China, August 28-31, 2011
Copyright © 2011 ORSC & APORC, pp. 51-58

Partitioning Trees with Supply, Demand and
Edge-Capacity

Masaki Kawabata!* Takao Nishizeki! '

!School of Science and Technology
Kwansei Gakuin University
2-1 Gakuen, Sanda, 669-1337 Japan.

Abstract Let T be a tree. Each vertex of T is either a supply vertex or a demand vertex, and is
assigned a positive number called the supply or demand. Each demand vertex can receive “power”
from exactly one supply vertex through edges in 7. Each edge is assigned a positive number called
the capacity. One wishes to partition 7 into subtrees by deleting edges from 7 so that each subtree
contains exactly one supply vertex whose supply is no less than the sum of all demands in the subtree
and the flow through each edge is no more than capacity of the edge. The “partition problem” is
a decision problem to ask whether 7" has such a partition. The “maximum partition problem”
is an optimization version of the partition problem. In this paper, we give three algorithms for the
problems. First is a linear-time algorithm for the partition problem. Second is a pseudo-polynomial-
time algorithm for the maximum partition problem. Third is a fully polynomial-time approximation
scheme (FPTAS) for the maximum partition problem.

Keywords tree; partition problem; maximum partition problem; supply; demand; edge-capacity;
algorithm; approximation; FPTAS; pseudo polynomial-time

1 Introduction

The partition problem and the maximum partition problem for graphs have some ap-
plications in the power supply problem for power delivery networks and VLSI circuits
[1,4,5, 6]. Ito et al. deal with the problems for trees having supply and demand vertices
[3], but do not take account of edge-capacities. This paper deals with the problems with
edge-capacities.

Let T be a tree. Each vertex of T is either a supply vertex or a demand vertex, and is
assigned a positive number called the supply or demand. Each demand vertex can receive
“power” from exactly one supply vertex through edges in 7. Each edge is assigned a
positive number, called the capacity. We thus wish to partition T into subtrees by deleting
edges from T so that

(a) each subtree contains exactly one supply vertex whose supply is no less than the
sum of all demands in the subtree; and

*masaki.kawabata7671 @kwansei.ac.jp
Tnishi @kwansei.ac.jp

52 The 10th International Symposium on Operations Research and Its Applications

(b) the flow through each edge is no more than the capacity of the edge.

Not every tree has such a partition. The partition problem is a decision problem to ask
whether T has such a partition. If T has no such partition, then we wish to partition 7 into
subtrees so that

(a) each subtree contains at most one supply vertex; and

(b) if a subtree contains a supply vertex, then the supply is no less than the sum of
all demands in the subtree and the flow through each edge is no more than the
capacity.

The maximum partition problem is an optimization problem to find one of these parti-
tions that maximizes the “fulfillment,” that is, the sum of demands in all subtrees with
supply vertices. Clearly, the maximum partition problem is a generalization of the parti-
tion problem.

Figure 2: (a) Tree T, and (b) maximum partition.

Figure 1(a) depicts a tree T'; each supply vertex is drawn by a rectangle and each
demand vertex by a circle, the supply or demand is written inside; and the capacity is
attached to each edge. The tree T has a desired partition as illustrated in Fig. 1(b); the

Partitioning Trees with Supply, Demand and Edge-Capacity 53

deleted edges are drawn by thick dotted lines; each subtree is surrounded by a thin dot-
ted line; the flow value is attached to each edge, and the flow direction is indicated by an
arrow. On the other hand, the tree 7 in Fig. 2(a) has no desired partition. Figure 2(b) illus-
trates the maximum partition of 7', whose fulfillment is (7+3+9)+(4+8)+(5+2+4+3+6)=51.

These problems can be defined for graphs in general. However, the partition problem
is NP-complete even for complete bipartite graphs [3]. On the other hand, the maximum
partition problem is NP-hard even for trees [3]. Moreover, the maximum partition prob-
lem is MAXSNP-hard for graphs [2].

In this paper we give three algorithms for a tree T by extending the algorithms for the
problems without edge-capacities in [3]. First is a linear-time algorithm for the partition
problem. Second is a pseudo-polynomial-time algorithm to solve the maximum partition
problem in time O(F2n), where n is the number of vertices in 7 and F is the sum of
all demands in 7. Third is a fully polynomial-time approximation scheme (FPTAS) for
the maximum partition problem. (The detail of the FPTAS is omitted in this extended
abstract.)

2 Linear Algorithm for the Partition Problem

In this section, we have the following theorem on the partition problem.

Theorem 1. The partition problem can be solved for trees in linear time.

In the remainder of this section, as a proof of Theorem 1, we give an algorithm to
solve the partition problem for trees in linear time. Let T be a given tree. We choose an
arbitrary vertex r as the root of T, and regard T as a “rooted” tree. We denote by s(v) the
supply of a supply vertex v, and by d(v) the demand of a demand vertex v. We denote by
¢(u,v) the capacity of an edge (u,v) joining vertices u and v. The algorithm repeatedly
executes the following Steps 1—4 until exactly one vertex remains in 7.

(Step 1) Choose any internal vertex u of T such that all children are leaves, and let D be
the set of all children of u that are demand vertices.

(Step 2) If there is a demand vertex v € D such that c(u,v) < d(v), then output “no desired
partition.”

(Step 3) If u is a demand vertex, then let d(u) := d(u) + ¥, cpd(v) and delete all vertices
in D from T. If the demand vertex u has a (supply) child, then execute the following
(a)—(0).

(a) Let s(v) := min{s(u),c(u,v)} for each child v of u. Let w be the child whose supply
is maximum among all children of u. Delete all the other children of u from T'.

(b) If d(u) < s(w), then delete w from T, regard u as a supply vertex with s(u) := s(w) —
d(u), and let T be the resulting tree.

(c) If d(u) > s(w), then delete the supply vertex w from T and let T be the resulting tree.
(Step 4) If u is a supply vertex, then delete all supply vertices that are children of « and
execute the following (a) and (b).

(a) If s(u) > Y,epd(v), then delete all the children of u from T, let s(u) := s(u) —
Y.epd(v), and let T be the resulting tree.

(b) If s(u) < Y.,epd(v), then output “no desired partition.”

54 The 10th International Symposium on Operations Research and Its Applications

When the algorithm terminates, 7' consists of a single vertex. If the vertex is a supply
vertex, then there is a desired partition. Otherwise, there is no desired partition.

One can easily observe that the algorithm correctly solves the partition problem in
linear time, and that the algorithm can be easily modified so that it actually finds a partition
of a tree if there is.

3 Maximum Partition Problem

The main result of this section is the following theorem.

Theorem 2. The maximum partition problem can be solved for a tree T in time O(F*n)
if the demands and supplies are integers and F = min{}.,cy, s(v), Lyev, d(v)}, where Vs
is the set of all supply vertices and Vy the set of all demand vertices in T.

In the remainder of this section, as a proof of Theorem 2, we give an algorithm to
solve the maximum partition problem in time O(F?n). In this section and the succeeding
section, a partition P of a tree T is to partition 7 into subtrees by deleting edges from T’
so that

(a) each subtree contains at most one supply vertex; and

(b) if a subtree contains a supply vertex, then the supply is no less than the sum of
all demands in the subtree and the flow through each edge is no more than the
capacity.

The fulfillment f (P) of a partition P is the sum of demands in all subtrees with supply
vertices. The maximum partition problem is to find a partition of T with the maximum
fulfillment, which is called the maximum fulfillment f (T) of T. Clearly f(T) < F.

One may assume that 7 is a rooted tree with root r. For a vertex v of T, we denote
by 7, the maximum subtree of T rooted at v. Let R be the set of all real numbers. For a
non-negative real number z, we denote by R, the set of all real numbers x < z, and denote
by R;’ the set of all real numbers x, 0 < x < z. Our idea is to introduce two new functions
ghu(Ty;x) and g0 (T,;x), x € R, in addition to the three functions gout(7y;x), gin(Ty;x)
and go(7,;x) considered in [3]. We compute the five functions for each vertex v from
leaves to the root of T by dynamic programming.

Let v be a vertex of T, let vy, v, - - ,v; be the children of v, and let e;, 1 <i <, be the
edge joining v and v;. Let 7;,,1 <i </, be the maximum subtree of T rooted at v;. We
denote by Tvi the subtree of 7, which consists of vertex v, edges ey, ez, - - ,e; and subtrees
1,,,T,,, -, T,. Clearly T, = Tvl . We denote by TVO the subtree of a single vertex v.

Let P be a partition of a rooted subtree 7, of T, and let R(P) be the set of all vertices
in the subtree in P containing the root v of 7,. We now define j-out, j-out-parent, j-in,
Jj-in-parent and isolated partitions, as follows.

(a) A partition P of T, is called a j-out partition, j € R}, if R(P) contains a supply vertex
wand s(w) > j+ Yuer(p)—fwy d(u). A j-out partition of T, corresponds to a partition
of T in which v is supplied power from a supply vertex in 7.

(b) A j-out partition P of T,, is called a j-out-parent partition if j < c(v,vP*"), where vP*
is the parent of v.

Partitioning Trees with Supply, Demand and Edge-Capacity 55

(c) A partition P of T, is called a j-in partition if the following (i) and (ii) hold:
(i) R(P) contains no supply vertex; and
(ii) add to T, a virtual supply vertex vs with s(vs) = j together with a virtual edge
(vs,v) with ¢(vs,v) = j, then in the resulting tree 7," all (demand) vertices in
R(P) can be supplied power from vs, that is, Y,cgpyd(u) < j and the flow
through each edge is no more than the capacity.

A j-in partition of 7, corresponds to a partition of T in which v is supplied power from
a supply vertex outside 7,. For a j-in partition P, let f*(P) = f(P) + Luer(p)d(u).
Clearly, a j-in partition P of T, induces a partition P* of T, such that f(P*) = f*(P).
(d) A j-in partition P of T, is called a j-in-parent partition if j < c(v,vP?).
(e) A partition P of T, is called an isolated partition if R(P) consists of a single demand
vertex v. An isolated partition of 7, corresponds to a partition P’ of T in which v is
not supplied power from any supply vertex in 7.

We now give a formal definition of the five functions gout(7};X), ghut(Ty:X), &in (T3),
g (Ty;x), and go(T;x), x € R:

gout(Ty;x) =max{j € RHTV has a j-out partition P
such that f(P) >x} ()

where gout(Ty;x) = —ooif T, has no j-out partition P with f(P) > x for any number j € R};
ghat(T:x) = min{gou (T;:x), c(v,**) }; 2)

gin(Ty;x)=min{j € R}|T, has a j-in partition P
such that f*(P) >x} 3)

where gin(7,;x) = +o0if T, has no j-in partition with £*(P) > x for any number j € R}:;

par .y [&in(Tix) if gin(Tosx) < c(v,vP);
8in (T:x) = { 400 otherwise; @
and
(Toix)= 0 if T, has an isolated partition P such that f(P)>x;
80U X) =1 Lo otherwise.

(&)

Let fou(7,) be the maximum fulfillment f(P) taken over all j-out partitions P of T,,
Jj€ RF. Thus

Jout(Ty) = max{x € R|gou(T};x) # —oo}. (6)

If gout(7,;x) = —oo for any number x € R, then let fou(7,) = —oo. On the other hand, let
fo(T,) be the maximum fulfillment f(P) taken over all isolated partitions P of T7,. Thus

Sfo(T,,) = max{x € R|go(T,;x) = 0}. 7

56 The 10th International Symposium on Operations Research and Its Applications

If go(T;;x) = +oo for any number x € R, that is, v is a supply vertex, then let f(T,,) = —co.
One can easily observe that

f(1) = max{ fou(T,), fo(T:)}, (3)

and hence

f(T) = f(Tr) = max{ fou(T>), fo(T-) })

for the root r of T. Note that a partition of T = T, with the maximum fulfillment f(7') is
either an isolated partition or a j-out partition for some number j € RF

Our algorithm computes gout(73:x), gho (113 X), &in(T13x), gh (T:x), and go(Ty;x) for
each vertex v of T from leaves to the root » of T by means of dynamic programming. One
can compute the fulfillment f(7) of T from gou (7;;x) and go(7;;x) by Egs. (6)—(8).

We first compute gout(7,;%), ghut (1.03%), gin(T25x), gh (T.2;x), and go(T,2;x) for each
vertex v of T as follows. (Remember that Tv0 consists of a single vertex v.) If vis a demand
vertex, then for any number x € R

Sou(T}3x) = —oo, (10)
gha(T):x) = —oo, (11)

dv) ifx<d(v);

. 0., _
gin(7,3x) = { +oo otherwise, (2
par -0, \ _ gin(Tvo;x) if gin(Tvo;x) < c(v,vP);
8y (1,5x) = { Joo otherwise, 1
and
0 if x <0;
0.\ _ =Y
go(Tyx) = { +oo otherwise. (9

If v is a supply vertex, then for any number x € R

0.~ J s(v) ifx<O0;
gout(T,sx) = { —oo otherwise, -

g2 (T2;x) = min{gou (T;x), c(v, P}, (16)
gin(T2;x) = oo, (17)

P(TY;5x) = oo, (18)

Partitioning Trees with Supply, Demand and Edge-Capacity 57

Figure 3: Flows in a j-out partition of T}

and
20(T0;x) = Hoo. (19)

We next compute gou (T4:1), €2 (T4:), in(T23), &0 (T4) and go(Tii), 1 < < 1,
for each internal vertex v of T from the counterparts for 7! and 7;,, where [is the num-
ber of the children of v. Remember that 7, = T}/, and note that 7}/ is obtained from 7!
and T, by joining v and v; as illustrated in Fig. 3 where T~ is surrounded by a thin dotted
line.

We explain only how to compute gou (7/;x) and ghoi (7% x), because one can similarly

compute gin(7};x), g (T;x) and go(7};x). Let P be a j-out partition of 7 such that
f(P) > x and j = gout(T};x) # —co. Then there are the following four Cases (a)-(d).
(In Figs. 3(a)—(d) an arrow represents the direction of power supply for Cases (a)—(d),
respectively.)
Case (a): v; is supplied power from a vertex in T\~

In this case, the j-out partition P of T, can be obtained by merging a k-out partition Py
of T:~! and a (k — j)-in-parent partition P> of T;, such that f(P;) >y and f*(P,) > x—y
for some numbers k(> j) and y € R}. (See Fig. 3 (a).) Intuitively, x and y are the
fulfillments of 7! and 7~!, respectively. One may assume that k = gou (7!~ ';y) and
k—j=gM"(T,;;x—y). Since gou(T};x) = j =k — (k— j), we define g2, (T};x,y) as
follows:

Su(Thx,y) = gou(T 7 1y) — g (T x — y). (20)

Case (b): v; is not supplied power.

In this case, P can be obtained by merging a j-out partition P; of 7~! and an isolated
partition P of T,, such that f(P;) >y and f(P,) > x—y for some y € R}\". (See Fig. 3 (b).)
Then j = j—0, and hence let

ggut<Tvi;x7y) :gout(Tviil;y)_gO(TVi;x_y)' (2])

Case (c): v; is supplied power from a vertex in T,,, and either v is a supply vertex or v is
supplied power from a vertex in Ti~ 1.

58 The 10th International Symposium on Operations Research and Its Applications

In this case, P can be obtained by merging a j-out partition P, of 7/~! and a k-out
partition P» of 7,, such that f(P;) >y and f(P») > x —y for some numbers k € R} and
y € R. (See Fig. 3 (c).) Then let

¢ (i gou(T755y) if gou(Trsx —y) > 0;
gout(T y) { oo ifg()u[(Tvi;-x*y) — (22)
Case (d): v is supplied power from a vertex in T,,.
In this case, P can be obtained by merging a k-in partition P; of Tv"_1 and a (j+k)-
out-parent partition P> of T;, such that f*(P;) >y and f(P») > x —y for some number
ke R} and y € R}. (See Fig. 3 (d).) Then j = (j+k) —k, and hence let

Zou(T1x,y) = ghut(Tuysx = y) — gin(T7™ 1), (23)
From g2, g2 85, and g4, above, one can compute gou(7);x) and ghat (T x) as follows:

gOUt(Tvi;x) = max { ggut(Tvi;xvy)vggut(Tvi;xay)a
gou(Thx,y), 80w (T x,y) |y € RY 1 (24)

and
&P (T x) = min{gou (T)5x), (v, P*") }. (25)

Suppose now that all the supplies and demands are integers. Then f(P) and f*(P)
are integer for any partition of T;,. Therefore, it suffices to compute values gou (7;x),
g (T3 x), gin(Tysx), gmar(Tv,x) and go(7,;x) only for integers x, 0 < x < F. One can
compute gout(7,;x), ghut(T.%:x), gin(T5x), g (T,0;x) and go(T,;x) for a vertex v of T
and all integers x, 0 < x < F, in time O(F) by Egs. (10)—(19). One can recursively
compute gout(7;x), ghut(T15x), gin(T)5x), &b (T7;x) and go(T};x) for an internal vertex
v of T and all integers x, 0 < x < F, in time O(F 2) by Egs. (20)—(25) for gou and by
the similar equations for g;, and go. Since 7, = T}/, one can compute fou(7;), fo(T;) and
f(T,) in time O(F) by Egs. (6) — (8). The number of vertices in T is n, and the number of
edges is n — 1. Therefore, one can compute f(T) = f(7;) in time O(F?n). This completes
a proof of Theorem 2.

References

[1] N. G. Boulaxis and M. P. Papadopoulos, “Optimal feeder routing in distribution system plan-
ning using dynamic programming technique and GIS facilities,” IEEE Trans. on Power De-
livery, Vol. 17, No. 1(2002), pp. 242-247.

[2] T. Ito, E. D. Demaine, X. Zhou and T. Nishizeki, “Approximability of partitioning graphs
with supply and demand,” Journal of Discrete Algorithms, 6(2008), pp. 627-650.

[3] T. Ito, X. Zhou and T. Nishizeki, “Partitioning trees of supply and demand,” IJFCS, Vol-
ume: 16, Issue:4(2005), pp. 803-827.

[4] T.Lengauer, “Combinatorial Algorithms for Integrated Circuit Layout,” John Wiley and Sons,
Chichester(1990).

[5] A. B. Morton and I. M. Y. Mareels, “An efficient brute-force solution to the network recon-
figuration problem,” IEEE Trans. on Power Delivery, Vol. 15, No. 3(2000), pp. 996-1000.

[6] J-H. Teng and C-N. Lu, “Feeder-switch relocation for customer interruption cost minimiza-
tion,” IEEE Trans. on Power Delivery, Vol. 17, No. 1(2002), pp. 254-259.

