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Abstract Obtaining kinetic constants used in rate equations is a key component of building sys-
tems model of metabolism. The availability of high throughput metabolomics measurements pro-
vides an opportunity to use reverse engineering approach to estimate kinetic parameters such as
maximal rate of enzyme Vmax especially. We presented a method of using two optimization al-
gorithms respectively to estimate Vmax using time series measurements of incomplete metabolites
combined with a metabolism model of photosynthetic carbon metabolism. The impact of choosing
different experiment protocols on the accuracy of parameter estimation was evaluated. The result
showed that using steady state initial condition and multiple measurements at each points can give
the best estimates of the estimation results. In addition, the choice of time intervals of time series
data does influence the estimation, i.e. focus on transient response or steady state part of time series
data will be better for estimation.

1 Introduction
Metabolism simulation is important for understanding the function of metabolism in

the post-genomic era. Different metabolism models have been built, see review [1, 2].
Metabolism models can be used to testing hypothesis regarding certain dynamic behav-
iors, asking “what if”questions, exploring better designs for achieving certain target func-
tion, or modification of metabolic pathway for generation of new functions [3]. The
model of photosynthetic carbon metabolism is one of such models. The individual steps
of photosynthesis process have been studied in great detail, which have been used to build
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complete mathematical model of photosynthesis [4, 5]. The complete model of photosyn-
thesis has wide applications, such as identifying enzymes for improved crop yield, identi-
fying enzymes limiting photosynthetic efficiency under different conditions [6], studying
the mechanisms of transient signals of CO2 uptake and fluorescence emission [7]. How-
ever, it is difficult to differentiate the activities of enzymes in the chloroplast stroma or in
the cytosol. In addition, the activities of different enzymes are under constant modifica-
tions in the field, and therefore, are different among different leaves [8]. So the measured
enzyme activities from large quantity of leaf material, as required for enzyme activity
measurement, will inevitably only represent averaged enzyme activities and not represent
any individual leaf performance. The recent development of metabolomics technology
provides a new opportunity to solve the problem of lack of kinetic information [3, 9], i.e.
using the measured time series measurements of metabolite concentrations to estimate the
enzyme concentrations based on the kinetic models.

Parameter estimation in biochemical pathways has attracted increasing attention in
recent years [10]. However, many issues related to parameter estimation using kinetic
models still need to be addressed. First of all, the time series data for parameter estimation
are inherently noisy since the samples for metabolites measurements have to be taken
from different parts of the leaves, or even different leaves. In addition, most metabolites
involved in the photosynthetic carbon metabolism exist in cytosol and participate in other
metabolism as well. Furthermore, multiple measurements of metabolite concentrations,
which are required to gain more accurate estimate of enzyme concentrations, need to be
taken for leaves at the same physiological status, e.g. at 10 seconds for dark-adapted
leaves.

Here presented a method of using two optimization algorithms respectively to esti-
mate Vmax using time series of incomplete metabolite measurements combined with a
metabolism model of photosynthetic carbon metabolism. The impact of choosing dif-
ferent experiment protocols on the accuracy of parameter estimation was evaluated. We
tested the relationship between estimate accuracy and measure protocol, then came up
with an optimal combination of protocols for better estimation. Finally, the new approach
incorporates the experiments error in addition to the possible error in time recording in
constructing the target functions, and correspondingly has the ability to use different mea-
surement simultaneously for parameter estimation.

2 Results and Discussion
2.1 The mathematical model of photosynthetic carbon metabolism

The photosynthetic carbon metabolism includes the Calvin cycle, photorespiratory
pathway, starch synthesis, and triose phosphate export process [4], which is one of the
most important metabolic process on this planet due to its role of generating carbohy-
drate, which is the basis of much of the wants of the human society, such as food, energy,
fiber etc.. A detailed mathematical model of this process has been developed [4] and
is briefly described here. The reaction diagram is shown in Figure 1 and Figure 2. In
these figures, the numbers represent the reaction numbers, which are used in the notation
of the rate equations as subscripts. The double-headed arrows represent reversible reac-
tions. The single-headed arrows represent essentially irreversible reactions. The space
between two dashed lines represents the chloroplast membrane. Most of the reactions
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in this system were assumed to follow Michaelis-Menten type kinetics. For those that
were not following Michaelis-Menten type kinetic, the best available rate equations from
literature were used. The Michaelis-Menten constants for each substrate in each reaction
were obtained from literature. For the complete description of the model, see [4, 5].
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Figure 1: The circles in the chloroplast membrane represent phosphate translocators,
which mediate the export of three-carbon metabolites (i.e. DHAP, PGA, and GAP) from
the stoma to the cytosol with a counter-import of phosphate.
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Figure 2: The steps of the photorespiratory reactions represented in the model. The circles
in the chloroplast membrane represent glycerate/glycollate translocators, which mediate
the transport of glycerate and glycollate through the thylakoid membrane between stroma
and cytosol.

2.2 Estimate Vmax

Here, we apply two different popular optimization algorithms, Levenberg-Marquardt
algorithm (gradient algorithm) and Nelder-Mead simplex algorithm (simplex algorithm),
to estimate different enzymes’ maximum rate Vmax in photosynthetic carbon metabolism
model. One one hand, we propose an hypothesize that the changing direction and general
trend of results in different experiments should be similar though the estimate accuracy
differs due to the optimization route. Then the results derived from different algorithms
will be plausible. One the other hand, with such a comparison, we could choose the
relative optimal algorithm that has lower estimate error for future application in estimating
Vmax. Details on the algorithms and implementation will be discussed in Method section.
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In our experiment, we try to minimize the estimated errors for each estimates us-
ing different choices of parameters, the number of initial conditions, the number of time
points, the number of measurement at each time point, the noise intensity of experiment
data, and time intervals among the time span of one experiment. It should be noted that
the target value in the target function should be set to the observed value under noise.

2.2.1 Initial condition number
To set different initial conditions means to adopt various initial concentration of metabo-

lites in photosynthetic carbon metabolism model. To vary initial conditions means to set
different experiment protocols which will result in the difference in initial conditions. But
the Michaelis-Menten constants will remain unchanged even if different initial conditions
are selected. This metabolic network could achieve the same steady state regardless of
the selection of initial value. However, the transient response would vary at the starting
period of time span.

Intuitively, more different initial conditions mean higher estimation accuracy due to
the introduction of more sufficient data. However, we notice that number of the random
chosen initial conditions have no monotonic relationship with the estimation accuracy.
This means that we should not arrange the experiment at bench randomly but following
some rules. However, from the results in Figure 3, there are no such rules for the selection
of initial conditions. As mentioned, steady state holds the same for the photosynthetic
carbon metabolism model regardless of transient response.

Then we suppose the observed steady state as initial condition. To test the hypothesis,
estimated errors from random chosen initial conditions and steady state initial condition
are compared. From the result in Figure 3, estimated error is relatively low when initial
condition number equals 2 in both algorithms. Then we will take this number as default
in the following experiment for comparison.

Figure 3: Estimated error under different initial condition numbers. Estimated errors by
gradient algorithm and simplex algorithm are showed in left and right axis respectively.
The ticks are scaled along y axis.

2.2.2 Measurement number
Because the intrinsic noise in biochemical reactions as well as the perturbation from

external environment, measurements at each time point for one initial condition should
not be recorded for only one time. However, more measurements means more repeats of
experiments thus more cost. So it is necessary to test an optimal measurement number
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that could guarantee an optimal accuracy. We generate a set of synthetic data under the
same initial condition. Then we add noise to the synthetic data at each measurement. The
default intensity of noise is set to 0.2 (20% fluctuation around the original data). This
noise intensity could vary according to the practical condition of experiment.

The results suggest that the estimated error will decrease when the measure number
increases. The result in Figure 4 suggests that the estimated error with only one measure-
ment is much higher than that with more than one measurement. Also, it should be noted
in Figure 4 that more measurements indicate more cost in experiment arrangement while
achieving slightly higher accuracy. Then a compromise between accuracy and cost should
be made. We set 4 as the default measurement number in the following experiment for
comparison.

Figure 4: Estimated error under different measurement numbers. The measurement num-
ber ranges from 2 to 9. The estimated errors are showed considering type of initial condi-
tion and selection of algorithms simultaneously.

2.2.3 Noise intensity
Noise intensity of the data will affect the estimation accuracy. In this experiment, we

study which algorithm is more robust against the noise while achieving higher estimation
accuracy simultaneously. We assume the data is corrupted by Gaussian white noise with
zero mean and variance to be tuned. The results in Table 1 suggest that both algorithms
have limitations in coping with relatively high intensity noise. They also show that the
estimation accuracy decreases when the noise intensity enhances.

We adopt noise with five different intensities to test the robustness of the two algo-
rithms and determine feasible range of noisy data for estimation. The result in Table 2
suggest that both algorithms have limitation in dealing with noisy data with noise intensity
exceeding 1 (that is 100% fluctuation around the original data).

Table 1 - Estimated error under different noise intensity for both algorithms

Noise Intensity/Algorithm RG RS SG SS
0.0500 209.0381 138.5700 51.9407 15.4618
0.5000 311.3802 640.3600 260.0898 45.6568
1.0000 24452.5218 63626.2000 542007.6761 10268.4733
5.0000 inf inf inf inf

10.0000 inf inf inf inf
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Here is a notation for the abbreviation of row algorithm in Table 2 . The former letter
represents the type of initial conditions: R is for Random initial condition, S is for Steady
state initial condition; the latter letter represents the selection of optimization algorithms:
G is for Gradient algorithm, S is for Simplex algorithm.

2.2.4 Sampling intervals
The time intervals determine the amount of data information for parameter estimation.

Obviously, taking more points means increase in computation cost. In this study, we try to
test the relationship between sampling intervals and estimate accuracy of the optimization.

We focus on two parts, transient response and steady state, that constitute the time
series data. Generally, we could hardly get the initial value when t = 0 but several discrete
sampling points. There are four types of sampling time selection in this test, defined as
dtimes. The four selections are (a). dtimes = [10 30 60 120 300 600]; (b). dtimes =
[500 1000 1500 2000 2500 3000]; (c). dtimes = [10 30 60 120 300 600 900 1200 1500];
(d). dtimes = [10 30 60 120 300 600 900 1200 1500 2000 3000], respectively. It should
be noticed that steady state will be achieved at around 900 min. Then the four selections
focus on different preference for transient response and steady state.

The results in Figure 5 suggest that emphasis only on the transient response (selection
(a)) or steady state (selection (b)) will achieve higher estimate accuracy rather than to
cover a wide range of sampling selections (selection (c) and selection (d)). We notice
that selection (b) need five times observe duration of selection (a) while not increasing
considerable estimate accuracy. We therefore adopt selection (a) as default in all the tests
throughout the paper.

Figure 5: Estimated error under different time intervals. The measurement number ranges
from 2 to 9. The estimated errors are showed considering type of initial condition and
selection of algorithms simultaneously. Interval 1-4 in the figure represent (a). dtimes =
[10 30 60 120 300 600]; (b). dtimes = [500 1000 1500 2000 2500 3000]; (c). dtimes =
[10 30 60 120 300 600 900 1200 1500]; (d). dtimes = [10 30 60 120 300 600 900 1200
1500 2000 3000], respectively.

3 Conclusions
In this paper, we estimated maximal rate of enzyme Vmax in photosynthetic carbon

metabolism model. We tested the relationship between the estimate accuracy and several
measurement protocols, including initial condition number, measurement number, noise
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intensity and time intervals, in order to come up with an optimal selection of raw data for
parameter estimation. To guarantee the generality of the selection, two popular optimiza-
tion algorithms were utilized for comparison. The result showed that higher estimation
accuracy could be achieved under the following conditions: 1. random choose initial
condition was not helpful and setting initial condition as the steady state; 2. measuring
each time point at least 2 times; 3. trying to lower the noise perturbation to the data; 4.
emphasising only on the transient response or steady state of the time course. The results
corresponded to our hypothesis and a set of combination of setups were optimized.

4 Methods
4.1 Target Function

In our implementation of the target function, we considered standard deviation from
both the time axis and the measurement axis. The standard deviations of the measure-
ments were used to normalize the difference in magnitude between concentrations of dif-
ferent compounds. If the simulated value for ith compound is at jth time point is Yi js, and
the mean and standard deviation of measurements at jth time point for ith compound is
Yi j f and σi j, then the contribution of measurements axis in the target function is expressed
as:

m

∑
i=1

n

∑
j=1

(
Yi j f −Yi js

σi j

)2

.

To incorporate the standard deviation of the time axis, assuming that we have measure-
ment data for time tm, we cans obtain the simulated value at different time points centered
around tm, say, five point earlier and five points later than tm. The time points are labeled
as: tm−5, tm−4, . . . , tm, tm+1, tm+1, . . . , tm+5. The Y value at each of the time point is cor-
respondingly defined as: Ym−5,Ym−4, . . . ,Ym,Ym+1,Ym+1, . . . ,Ym+5. Calculate the absolute
value of the difference between the simulated Y and the measurement data at the time
(Yd), and then take the smallest value of the difference. To construct the target function,
first find the t corresponding to the smallest |Y −Yd | as tsd ; then calculate the probability
density function of tsd assuming that the average of the local t is tm, the standard deviation
is 0.1 following a Gaussian distribution. The value of the probability is represented as
PDF(tsd),

PDF(tsd) =
1√
2π

e−0.5u2
,

where in our case, we assume that σ is assumed to be 0.1 in this particular example. Take
the integral of the probability PDF of all t with |t− tm| > |tsd− tm|. The integral has a
value of p. Use the 1/p directly in the target function. Therefore, the total target function
is calculated as:

F =
m

∑
i=1

n

∑
j=1

(
Yi j f −Yi js

σi j

)2

+
1
p
.

4.2 Optimization algorithms
Several optimization algorithms were applied in the search for the parameters. Due

to the complicated nonlinearities of the network, the searching route and optimization
mechanism for different algorithms, the performance and accuracy differed tremendously.
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In this study, two methods were applied separately. Levenberg-Marquardt method is a
gradient-based method for solving nonlinear least squares problems. This can be seen
as Gauss–Newton with damping or as a combination of Gauss–Newton with steepest
descent [11, 12]. Simplex algorithm is a direct search method that does not use numerical
or analytic gradients [13]. It is based on the idea of an adaptive simplex: the simplest
polytope of n+1 vertices in n dimensions.
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