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Abstract In this paper, we study the stability of the nonlinear hybrid system describing the con-
centrations of extracellular and intracellular substances in the process of bio-dissimilation of glyc-
erol to 1,3-propanediol. We prove an asymptotical stability lemma in nonlinear impulsive hybrid
systems and obtain the strict stability and uniformly asymptotical stability for the nonlinear hybrid
system. These results provide less conservative stability conditions for hybrid system as compared
to classical results in the literature and allow us to characterize the invariance of a class of nonlinear
hybrid dynamical systems.
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1 Introduction
1,3-propanediol(1,3-PD) possesses potential applications on a large commercial scale,

especially as a monomer of polyesters or polyurethanes, its microbial production is re-
cently paid attention to in the world for its low cost, high production and no pollution,
etc. Among all kinds of microbial production of 1,3-PD, dissimilation of glycerol to 1,3-
PD by Klebsiella pneumonia has been widely investigated since 1980s due to its high
productivity[1]. The experimental investigations showed that the fermentation of glycerol
by K. pneumonia is a complex bioprocess, since the microbial growth is subjected to
multiple inhibitions of substrate and products. Over the past several years, great progress
has been made in studying the nonlinear dynamical system of continuous fermentation
of glycerol by K. pneumonia, including the quantitative description of the kinetics of cell
growth, substrate consumption and product formation [2,3], and so on. In researches on
fed-batch culture, all numerical results are based on the continuous dynamical models
and there exist big errors between computational and experimental results. In fact, there
exist impulsive phenomena in fed-batch culture, so the process characterized by continu-
ous models is not fit for the actual process any longer. In order to characterize the actual
process, the impulsive differential equations are applied to the fed-batch fermentation[4].
In recent years, nonlinear impulsive, multistage and hybrid dynamical systems have been
explored to formulate the fed-batch culture with coupled open loop inputs of glycerol and
alkali [5]. The parameters in continuous system are not fit for the impulsive system, so
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parameter identification is necessary. Usually, ranges of parameters change in the neigh-
borhood of initial values during the identification process. But we can’t ensure the system
is stable under the given ranges of parameters. Thus, stability of the system becomes a
fundamental issue in system analysis and design, that is necessary for system identifica-
tion and optimal control.

In this paper, we consider the impulsive dynamical system in [6] as preliminaries.
The paper is organized as follows. In section 2 a nonlinear hybrid system is described for
the fed-batch culture. Section 3 analyzes the strict stability and uniformly asymptotical
stability for the model. Discussions and conclusions are presented at the end of this paper.

2 Nonlinear hybrid system in fed-batch culture
The fed-batch culture begins with batch fermentation, then batch-fed glycerol and

alkali are discontinuously added to the reactor every so often in order that glycerol con-
centration keeps in a proper range and the pH of the solution in a required level.

According to the factual experiments, we make the following assumptions.
(A1) The concentration of reactants are uniform in reactor, while time delay and

nonuniform space are ignored.
(A2) the sub substrates added to the reactor only include glycerol and alkali. Under

assumptions (A1) and (A2), the fed-batch process can be formulated by

dCX (t)
dt

= (µ−d)CX (t)−
FG +FN

V (t)
CX (t), (1)

dCGly(t)
dt

=−qGlyCX (t)+
FG

V (t)
(Cs0 −CGly(t))−

FN

V (t)
CGly(t), (2)

dCPD(t)
dt

= qPDCX (t)−
FG +FN

V (t)
CPD(t), (3)

dCHAc(t)
dt

= qHAcCX (t)−
FG +FN

V (t)
CHAc(t), (4)

dCEtOH(t)
dt

= qEtOHCX (t)−
FG +FN

V (t)
CEtOH(t), (5)

dCNa+(t)
dt

=− FG

V (t)
CNa+(t)+

FN

V (t)
(ρ−CNa+(t)), (6)

dV (t)
dt

= FG +FN , (7)

where CX (t),CGly(t),CPD(t),CEtOH(t) are the concentrations of biomass, glycerol, 1,3-
PD and ethanol in reactor at time t; CHAc(t) is the total concentration of acetic acid in
reactor, including Ac− ions, and V (t) is the volume of the solution. If there is no confu-
sion, we shall simplify Ci(t) as Ci, i = X ,Gly,PD,HAc,EtOH, Na+, and V (t) as V . d is
the specific decay rate of cells [7]. Cs0(mmol/L) and ρ(mmol/L) are the concentrations of
glycerol and NaOH in feed medium,
respectively. FG and FN are feeding velocities of glycerol and alkali, which are discrete
variables respectively taking values from finite sets S1 := [0,v1] and S2 := [0,v2], where
v1 and v2 are constant flow rates of glycerol and alkali pumps.
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The specific growth rate of cells µ , specific consumption rate of substrate qGly and
specific formation rate of products qii = X ,Gly,PD,HAc,EtOH, are expressed by the
following equations based on previous work [2].

µ = µm
CGly

CGly + ks
(1− CGly

C∗Gly
)(1− CPD

C∗PD
)(1− CHAc

C∗HAc
)(1− CEtOH

C∗EtOH
), (8)

qGly = m2 +
µ
Y2

+∆2
CGly

CGly + k∗2
, (9)

qPD = m3 +µY3 +∆3
CGly

CGly + k∗3
, (10)

qHAc = m4 +µY4 +∆4
CGly

CGly+ k∗4
, (11)

qEtOH = m5 +µY5 +∆5
CGly

CGly+ k∗5
, (12)

Here mi,Yi,∆i and k∗i , i = 2,3,4,5, are parameters. µm is the maximum specific growth
rate and ks is a Monod saturation constant. The critical concentrations of glycerol, 1,3-
PD, acetic acid and ethanol for cell growth are C∗Gly = 2039mmol/L, C∗PD = 1300mmol/L,
C∗HAc = 1026mmol/L and C∗EtOH = 360.9mmol/L, respectively. And the parameters in the
model come from [6].

3 The stability analysis of the model
The nonlinear hybrid system (1)− (7) can be converted into another identical nonlin-

ear hybrid system (14) by using (7) of nonlinear hybrid system.

V (t) = (FG +FN)t +C.

Let C =V0 and V0 = k(FG +FN), then

V (t) = (FG +FN)t + k(FG +FN). (13)

Using (13), we may obtain the following nonlinear hybrid system:




dCX (t)
dt

= (µ−d)CX (t)−
1

t + k
CX (t),

dCGly(t)
dt

=−qGlyCX (t)−
1

t + k
CGly(t)+

FN

(t + k)(FG +FN)
Cs0 ,

dCPD(t)
dt

= qPDCX (t)−
1

t + k
CPD(t),

dCHAc(t)
dt

= qHAcCX (t)−
1

t + k
CHAc(t),

dCEtOH(t)
dt

= qEtOHCX (t)−
1

t + k
CEtOH(t),

dCNa+(t)
dt

=− 1
t + k

CNa+(t)+
FN

(t + k)(FG +FN)
ρ,

(14)
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The equilibrium point of this system is (0, FN
FG+FN

Cs0 ,0,0,0,
FN

FG+FN
ρ). If we move this

equilibrium point to (0,0,0,0,0,0), the nonlinear hybrid system (14) will be changed into
the following nonlinear hybrid system (15) correspondingly.





dx1(t)
dt

= (µ−d)x1(t)−
1

t + k
x1(t),

dx2(t)
dt

=−q2x1(t)−
1

t + k
x2(t),

dx3(t)
dt

= q3x1(t)−
1

t + k
x3(t),

dx4(t)
dt

= q4x1(t)−
1

t + k
x4(t),

dx5(t)
dt

= q5x1(t)−
1

t + k
x5(t),

dx6(t)
dt

=− 1
t + k

x6(t),

(15)

For convenience here, we denote CX (t),CGly(t),CPD(t),CHAc(t),CEtOH ,CNa+ , qGly,qPD,qHAc,
qEtOH as x1,x2,x3,x4,x5,x6, q2,q3,q4,q5 respectively.

In order to analyze the stability of the system. we consider the impulsive differential
system in a real n-dimensional Euclidean space with norm ‖ · ‖.





x
′
= f (t,x), t 6= tk

∆x = Ik(x), t = tk
x(t+0 ) = x0, t0 ≥ 0,k = 1,2, · · ·,

(16)

Under the following assumption:
(H1) 0 < t1 < t2 < · · ·< tk < · · ·, and tk→ ∞ as k→ ∞;
(H2) f : R+×Rn→ Rn is continuous in (tk−1, tk]×Rn and for each x ∈ Rn, k = 1,2, · · ·,

lim
(t,y)→(t+k ,x)

f (t,y) = f (t+k ,x) exists;

(H3)Ik : Rn→ Rn.

Assume that f (t,0)≡ 0 and Ik(0) = 0 for all k so that the trivial solution of (16) exists.
Denote S(ρ) = {x ∈ Rn : ‖x‖< ρ}. We define the following classes of function spaces:

K = {a ∈C[R+,R+] : a is strictly increasing and a(0) = 0}.
V0={V : R+×Rn → R+čžV is continuous in (tk−1, tk]×Rn and for each x ∈ Rn,k =

1,2, · · ·, lim
(t,y)→(t+k ,x)

V (t,y) =V (t+k ,x) exists; V is locally Lipschitz in x }.

For V ∈V0,(t,x) ∈ (tk−1, tk]×Rn, define the generalized derivatives of the dynamical
system (16).

D+V (t,x) = limsup
h→0+

1
h
[V (t +h,x+h f (t,x))−V (t,x)],

D−V (t,x) = liminf
h→0−

1
h
[V (t +h,x+h f (t,x))−V (t,x)].
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Definition 1. The trivial solution of the system (16) is said to be
(S1) practically stable, if given (λ ,A) with 0< λ < A, we have ‖x0‖< λ implies ‖x(t)‖<
A, t ≥ t0 for some t0 ∈ R+;
(S2) uniformly practically stable, if (S1) holds for all t0 ∈ R+;
(S3) strict practically stable, if (S1) holds and for every µ ≤ λ , there exists B < µ such
that ‖x0‖> µ implies ‖x(t)‖> B, t ≥ t0;
(S4) strict uniformly practically stable, if (S3) holds for all t0 ∈ R+;
(S5) uniformly attractive, if given δ > 0,ε > 0, there exists T = T (ε), such that ‖x0‖< δ
implies ‖x(t)‖< B, t ≥ t0 +T ;
(S6) uniformly practically asymptotically stable, if (S2) ,(S5) hold with δ = λ .

Lemma 1. (See[8]) Let V ∈V0 and suppose that
{

D+V (t,x)≤ g(t,V (t,x)), t 6= tk
V (t+,x+ Ik(x))≤ ψk(V (t,x)), t = tk

where g : R+ × R+ → R, g satisfies (H2) and ψk : R+ → R+ is nondecreasing. Let
r(t) = r(t, t0,u0) be the maximal solution of the comparison system of





u
′
= g(t,u), t 6= tk

u(t+k ) = ψk(u(tk)), t = tk
u(t+0 ) = u0 ≥ 0, k = 1,2, · · ·,

existing on [t0,∞). Then V (t+0 ,x0)≤ u0 implies that V (t,x(t))≤ r(t), t ≥ t0, where x(t) =
x(t, t0,x0) is any solution of (16) existing on [t0,∞).

Lemma 2. Suppose that
(i) 0 < λ < A < ρ;
(ii) There exist V : R+×S(ρ)→ R+, V1 ∈V0, a1,b1 ∈ K for (t,x) ∈ R+×S(ρ), such that

b(‖x‖)≤V (t,x)≤ a(‖x‖)

and {
D+V (t,x)≤ g(t,V (t,x)), t 6= tk
V (t,x+ Ik(x))≤ ψk(V (t,x)), t = tk

where g : R+×R+→ R, g(t,0)≡ 0 and g satisfies (H2). ψk : R+→ R+ is nondecreasing;
(iii) The comparison system





u
′
= g(t,u), t 6= tk

u(t+k ) = ψku(tk)), t = tk
u(t+0 ) = u0 ≥ 0, k = 1,2, · · ·,

is uniformly practically asymptotically stable with respect to some (λ1,A1);
(iv) a(λ )≤ b(A);
Then the trivial solution of (16) is uniformly practically asymptotically stable.
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Proof. We claim that if ‖x0‖ < λ we have ‖x(t)‖ < λ , t ≥ t0 where x(t) = x(t, t0,x0) is
any solution of (16). If it is not true, there exists a solution x(t) = x(t, t0,x0) of (16) with
‖x(t)‖< λ and t2 > t1 > t0,t2, t1 6= tk such that

‖x(t1)‖< λ ,‖x(t2)‖ ≥ A

Hence we get by Lemma 1 using condition (ii)

V (t,x)≤ r(t, t0,V (t+0 ,x0)), t0 ≤ t ≤ t2, (17)

where r(t, t0,V (t+0 ,x0)) is the maximal solution of the comparison system through (t0,V (t+0 ,x0)).
Combining condition (ii) and (17), we have

V (t2,x(t2))≤ r(t2, t1,V (t1,x(t1)))< a(λ )≤ b(A)

But by condition(ii), we obtain

b(A)≤ b(‖x(t2)‖)≤V (t2,x(t2))

This is a contradiction, so the claim is valid.
To complete the proof, we need prove the trivial solution of (16) is uniformly attrac-

tive. Since u≡ 0 of the comparison system is uniformly attractive, given b(ε)> 0, there
exist a T = T (ε) such that u0 < λ1 implies

u(t)< b(ε), t ≥ t0 +T

Defining λ ∗=min(λ ,a−1(λ1)), we choose ‖x0‖< λ ∗, then V (t+0 ,x0)≤ a(‖x0‖)< a(λ ∗)≤
λ1. It follows that

b(‖x(t)‖)≤V (t,x(t))≤ r(t, t0,V (t+0 ,x0))< b(ε), t ≥ t0 +T,

which proves that the trivial solution of (16) is uniformly attractive. The proof is com-
pleted.

Lemma 3. (See[8]). Suppose that
(i) 0 < λ < A < ρ;
(ii) There exists V1 : R+× S(ρ)→ R+,V1 ∈ V0,a1,b1 ∈ K such that a1(λ ) ≤ b1(A) for
(t,x) ∈ R+×S(ρ),

b1(‖x‖)≤V1(t,x)≤ a1(‖x‖)
and {

D+V1(t,x)≤ 0, t 6= tk
V1(t+,x+ Ik(x))≤ (V1(t,x)), t = tk

where g1 : R+×R+→ R,g1(t,0)≡ 0 and g1 satisfies (H2).
(iii) There exists V2R+×S(ρ)→ R+V2 ∈V0,a2,b2 ∈ Ksuch that for (t,x) ∈ R+×S(ρ),

b2(‖x‖)≤V2(t,x)≤ a2(‖x‖)
and {

D−V2(t,x)≥ 0, t 6= tk
V2(t+,x+ Ik(x))≥ (V2(t,x)), t = tk

where g2 : R+×R+→ R, g2(t,0) ≡ 0 and g2 satisfies (H2). Then the trivial solution of
(16) is uniformly strictly practically stable.
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Theorem 1. The equilibrium point of the nonlinear hybrid system (15) is uniformly prac-
tically asymptotically stable.

Proof. The proof of the theorem can be decomposed three parts. Firstly, we construct
function

a(x) = 8x2,b(x) =
1
2

x2,V =
(x1 +2x2 + x3 + x4 + x5 + x6)

2

2
and prove that

b(‖x‖)≤V (x)≤ a(‖x‖).
Since
a(‖x‖)−V (x) = 8(x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6)−

(x1+2x2+x3+x4+x5+x6)
2

2
= 15

2 (x2
1 + x2

3 + x2
4 + x2

5 + x2
6)+

12
2 x2

2− x1(x3 + x4 + x5 + x6)−2x2(x3 + x4 + x5 + x6)
− x3(x4 + x5 + x6)− x4(x5 + x6)− x5x6
≥ 15

2 (x2
1+x2

3+x2
4+x2

5+x2
6)+

12
2 x2

2−x1 max
3≤i≤6

{xi}−2x2 max
3≤i≤6

{xi}−x3 max
4≤i≤6

{xi}−x4 max
5≤i≤6

{xi}−
x5x6
≥ 15

2 (x2
1 + x2

3 + x2
4 + x2

5 + x2
6)+

12
2 x2

2− (x1 +2x2 + x3 + x4 + x5) max
3≤i≤6

{xi}
≥ 15

2 (x2
1 + x2

3 + x2
4 + x2

5 + x2
6)+

12
2 x2

2− 12
2 max

3≤i≤6
{xi

2}
≥ 0
we have

a(‖x‖)≥V (x).

Since

V (x)−b(‖x‖) = (x1 +2x2 + x3 + x4 + x5 + x6)
2

2
− x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

2
≥ 0

we have
V (x)≥ b(‖x‖).

Secondly, we complete the proof of condition (ii) of Lemma 2. We have
D+V (x) = (x1 +2x2 + x3 + x4 + x5 + x6)(x

′
1 +2x

′
2 + x

′
3 + x

′
4 + x

′
5 + x

′
6)

= (x1 +2x2 + x3 + x4 + x5 + x6)[(µ−d− 1
t+k )x1 +(−2q2x1− 2

t+k x2)+(q3x3− 1
t+k x3)

+q4x1− 1
t+k x4)+(q5x1− 1

t+k x5)− 1
t+k x6]

= (x1+2x2+x3+x4+x5+x6)[(µ−d−2q2+q3+q4+q5)x1− 1
t+k (x1+2x2+x3+x4+

x5 + x6)]
Let
ξ = µ−d−2q2 +q3 +q4 +q5 = µ−d−2(m2 +

µm
Y2

+∆2
x2

x2+k∗2
)+(m3 +µY3 +∆3

x2
x2+k∗3

)

+(m4 +µmY4 +∆4
x2

x2+k∗4
)+(m5 +µmY5 +∆5

x2
x2+k∗5

).

we have
ξ =(m3+m4+m5−2m2−d)+µ(1+Y3+Y4+Y5− 2

Y2
)+(∆3

x2
x2+k∗3

+∆4
x2

x2+k∗4
+∆5

x2
x2+k∗5

−
2∆2

x2
x2+k∗2

)

≤ (−2.6703+0.00292+0.00408−0−0.025)+µ(1+97.7859+15.3834+10.7331−
2

0.0131 )

+ [(7.5597+0.0104+0.1022)× x2
x2+110 −12.0139× 2x2

x2+90 ]
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≤ 0
So we can get

D+V (x)≤− 1
t + k

(x1 +2x2 + x3 + x4 + x5 + x6)
2 =− 2

t + k
V (x).

Next we will prove

V (x(tk)+ Ik(x(tk)))≤V (x(tk)), f or t 6= tk

Since ∆x = Ik(x) = 0, for t 6= tk,
then

V (x(tk)+ Ik(x(tk))) =V (x(tk))

So 



D+V (x)≤− 2
t + k

V (x), t 6= tk

V (x(tk)+ Ik(x(tk))) =V (x(tk)), t = tk

Further, we can get the comparison system




u
′
=− 2

t + k
u, t 6= tk

u(t+k ) = u(tk)),
u(t+0 ) = u0 ≥ 0 k = 1,2, · · ·,

Thirdly, we will prove that u is uniformly practically asymptotically stable with re-
spect to some (λ1,A1). Using the comparison system, we get u(t) = u0

(t+k)2 . This implies
that for λ1 < A1, u0 < λ1

u(t) =
u0

(t + k)2 ≤
λ1

(t + k)2 ≤ λ1 < A1

To complete the proof, we need prove u is uniformly attractive. If given δ > 0,ε > 0 and
δ < ε , such that u0 < δ implies u(t) = u0

(t+k)2 < δ
(t+k)2 < ε , only need t <

√
ε
δ − 1 then

given δ > 0,ε > 0 and δ < ε , there exists T =
√

ε
δ − 1− t0, such that u0 < δ implies

u(t)< ε , for t ≥ t0 +T .
Combining above-mentioned three parts, by Lemma 2 the proof of the theorem is

completed.

Theorem 2. The equilibrium point of the nonlinear hybrid system (15) is uniformly strict
practically stable.

Proof. The theorem is proved by four parts. Firstly, we construct function

a1(x) = 8x2,b1(x) =
1
2

x2,V1 =
(x1 +2x2 + x3 + x4 + x5 + x6)

2

2
,

by the proof of Theorem 1, we can obtain

b1(‖x‖)≤V1(x)≤ a1(‖x‖)
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Secondly, by the proof of Theorem 1, we can obtain

D+V1(x)≤−
2

t + k
V1(x)≤ 0,V1(x(tk)+ Ik(x(tk))) =V1(x(tk))

So {
D+V1(x)≤ 0, t 6= tk
V1(x(tk)+ Ik(x(tk))) =V1(x(tk)), t = tk

Thirdly, we construct function

a2(x) = exp{−1
2

x2},b2(x) = exp{−8x2},V2 = exp{− (x1 +2x2 + x3 + x4 + x5 + x6)
2

2
},

Next we need prove that
b2(‖x‖)≤V2(x)≤ a2(‖x‖).

Since

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6
2

≤ (x1 +2x2 + x3 + x4 + x5 + x6)
2

2
≤ 8(x2

1+x2
2+x2

3+x2
4+x2

5+x2
6),

then

exp{−8x2} ≤ exp{− (x1 +2x2 + x3 + x4 + x5 + x6)
2

2
} ≤ exp{−1

2
x2}.

So
b2(‖x‖)≤V2(x)≤ a2(‖x‖).

Fourthly, by the proof of Theorem 1, we can obtain
D−V2(x)

=−2(x1+2x2+x3+x4+x5+x6)
2)(x

′
1+2x

′
2+x

′
3+x

′
4+x

′
5+x

′
6)exp (x1+2x2+x3+x4+x5+x6)

2

2
≥ 4

t+1V1(x)V2(x)≥ 0, V2(x(tk)+ Ik(x(tk))) =V2(x(tk)).

So {
D−V2(x)≥ 0, t 6= tk
V2(x(tk)+ Ik(x(tk))) =V2(x(tk)), t = tk

Combining above-mentioned four parts, by Lemma 3 the proof of the theorem is com-
pleted.

4 Conclusions
This paper develops an asymptotical stability lemma in nonlinear impulsive hybrid

systems and analyzes the stability of nonlinear impulsive hybrid systems in microbial
fed-batch culture by using strict stability theorem and uniformly asymptotical stability
theorem. It shows that the system has strict stability and uniformly asymptotical stability.
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