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Abstract Hepatocellular carcinoma (HCC) is one of the most harmful cancer in the world. The
transgenic mouse model of hepatocarcinogenesis was established to decipher the pathological mech-
anism of HCC. Previous studies found that several transgenes play important roles in transgenic
mouse carcinogenesis. However, the detail relationship between transgene and other genes is still
unknown. In this paper, we propose a network flow based mathematical model to infer the transgene
centering functional network (TCFN), which shows the regulatory effect of transgene to the dif-
ferentially expressed genes, by integrating genome-wide high-throughput data and protein-protein
interaction network. The proposed model was applied to transgenic mouse development study.
In particular, tumor progress related TCFN on different development stages was identified. The
analysis of dynamic changes of TCFN revealed some important genes highly correlated to the tu-
mor development. The TCFN and the identified genes provide new insights on the mouse HCC
pathogenic mechanisms.
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1 Introduction
Liver cancer is a major risk of human health, which causes 662,000 deaths world-

wide per year, about half of them in China according to the World Health Organiza-
tion (http://www.who.int/mediacentre/factsheets/fs297/en/). Since the liver is made up
of many various cells, multiple types of tumors, which are malignant and benign, or
metastatic tumor from different tissues, can develop in the liver. Hepatocellular carci-
noma (HCC) is the major type of malignant primary liver neoplasm. It is the fifth most
common cancer and the third most common cause of death from cancer worldwide [6].
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The aetiological factors of HCC mainly include the virus infection (hepatitis B virus and
hepatitis C virus), prolonged dietary aflatoxin exposure and alcoholic cirrhosis. In the
molecular level, many genetic or epigenetic events associated with the development of
HCC have been pointed out, such as the inactivate of the tumor suppressor P53, mutations
in β -catenin, methylation of cancer-relevant genes (P16, COX2 etc.) and so on [5]. In
addition, genomic instability (telomere shortening and chromosome segregation defects
etc.) and genomic alterations (frequent chromosomal gains in 1q, and 6p, and losses in 1p
and 4q, etc.) [5] are through to contribute to HCC. Although these mechanisms have been
discovered, they are still far from diagramming the molecular, cellular and environmental
mechanisms that drive disease pathogenesis.

To study the molecular pathogenical mechanism of HCC, a number of transgenic mice
models of hapatocarcinogenesis have been established, in which selective expression of
various cellular or viral genes in the liver induces a high predisposition to primary HCC
development [3], etc. These mice invariably develop HCC with a relatively short period
after birth. The transgene shows a peculiar expression pattern which greatly facilitates
tumor onset.

Recently, along with the development of high-throughput mass spectrometry (MS)
technologies, it extends the traditional method, such as western blot, from measuring a
single protein to proteome-wide proteins simultaneously. This progress greatly facilitates
and systematically investigate the behavior of all proteins, which is also suitable for the
analysis of complex diseases, especially HCC. However, the interactions between pro-
teins have not been considered with MS data. It is known that proteins function in an
cooperative manner rather than isolated way. The proteins often interact together to affect
the biological process or disease onset.

In this article, we systematically integrate the mass spectrometry data of protein ex-
pression and protein-protein interaction network to explore the heptocyte carcinogenesis
of transgenic mice. Focusing on the important role of transgene and its related interaction
network, we proposed an mathematical programming model to retrieve transgene center-
ing functional interaction network (TCFN) at different development stage of transgenic
mice. The topological structure of the identified network could uncover the functional
linkage and cooperation between transgene and differentially expressed (DE) proteins.
By analyzing the dynamical changes of TCFN, we got useful information to understand
the process of HCC onset. Specifically, some topological important proteins were identi-
fied and confirmed to be related to cancer by literatures.

2 Materials
The in-house protein expression data of transgenic mouse liver tissue as well as age-

matched normal mouse was measured by high-throughput proteomic mass spectrometry
technique. In 6 time points i.e. 10 day after born, 2 month, 3 month, 5 month, 7 month and
11 month, which covered the entire process of hepatocarcinogenesis in transgenic mouse
model, dynamical proteomic expression change of liver cell was detected respectively. At
each time point, 6 mice composed of 3 transgenic mice and 3 normal mice were carefully
chosen and subject to MS analysis. Finally, 3920 noredundant proteins expression profiles
from 36 runs were obtained. For further analysis, the expression values were transformed
by base 2 logarithm function.
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The protein-protein interaction data used in this study is from STRING database (ver-
sion 8) [8], which is a meta-resource that aggregates most of the available information
on physical protein-protein interaction and functional linkage, such as co-expression, co-
evolution etc. In this context, the protein-protein interactions are defined in the general
sense which include all kind of direct functional relationship, such as physical or regu-
latory interaction. Each interaction is weighted by a scoring function which integrates
information from numerous sources, including experimental repositories, computational
prediction methods and text mining. To obtain more accurate results, interactions with
weight > 0.5 were selected. There were totally 16566 proteins and 75314 interactions.

3 Methods
3.1 Differentially expressed proteins identification

To identify differentially expressed proteins between transgenic mice and wild-type
mice in each time point, we use the fold-change (FC) measurement as follows:

FCi =
xi

yi
,

where xi and yi represent the average expression value of protein i in transgenic samples
and wild-type samples in each time point. Since sample size of both type of mice is 3
and there are many missing values in each samples, the statistical significance is hard to
meet. Thus, comparing with other widely used methods in analysis of gene expression
data, such as t-statistics, SAM [9] etc., FC is more suitable for this study. Due to high
missing rate of raw data and plenty of minor expression changes, we set a threshold
θ = 1.1 to include more proteins. Although this might bring more random noise, the
integration of protein-protein interaction network can partly eliminate such confounding
effects. Proteins with FC score higher than θ are regarded as up-regulated, while proteins
with FC score lower than 1/θ are regarded as down-regulated. Up- and down-regulated
proteins are all considered as differentially expressed (DE).

3.2 Functional networks construction
In each development stage of transgenic mice, DE proteins provide good signals to

infer the molecular function changes. We constructed the network between transgene and
DE proteins, called transgene centering functional network (TCFN), at each time point by
integrating protein-protein interaction network and DE protein set. TCFN which contains
transgene, DE proteins and direct or indirect interactions or pathways between them is
a subnetwork of protein-protein interaction network. DE proteins are different when the
time changes which lead to changes of topological structure of TCFN. As showed in
results section, the dynamical behavior of TCFN would provide information undetectable
by expression change.

To infer TCFN, we employ a flow model from graph theory [7, 1]. Formally, given an
network G = (V,E,W ), where the set V of n nodes presents the proteins, the edge set E
represents the interactions between proteins, and edge weight set W =(wi j), i, j = 1, . . . ,n,
represents the reliability of interactions. wi j is an positive constant between 0 and 1, which
lower wi j indicates more reliability of interaction between protein i and j. For STRING
interaction database used, the weight of interactions w′i j provided in the database were
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transformed by wi j = 1−w′i j, and wi j were set to infinity for protein i and j without
interaction weight in STRING. In this edge-weighted network, we model the TCFN as a
subnetwork connecting transgene with DE proteins with most reliable edges and find it
by the following linear programming (LP) model:

min
n
∑

i=1

n
∑
j=1

ci jwi j,

s.t.
n
∑

i=1
csi = R,

n
∑
j=1

c ji−
n
∑

k=1
cik = 0, i = 1, . . . ,n, and i 6∈ DEP,

n
∑
j=1

c ji−
n
∑

k=1
cik = 1, i ∈ DEP,

0 6 ci j 6 R.

Node s is the source node which emits flows to the sink nodes which absorb flows. To
uncover the activation force from transgene to DE protein (DEP), transgene is regarded as
the source node and DEP mapped to the network G are regarded as sink nodes. Variable
ci j represents volume of flow from node i to node j, R = |DEP| is the number of nodes in
DEP set. The source node emit R units of flow to R sink nodes belonging to the DEP set,
each of them absorbs 1 unit of flow. The subnetwork passed by flow connecting the source
to the sinks is a functional network which connecting transgene to the DE proteins. The
goal of this LP model is to find the most reliable TCFN, i.e. subnetwork with minimal
weights. Thus, the object function is to minimize the weights of the subnetwork passed
by flow. The first constraint presents that the source output R units of flow and the second
constraint represents that every sink node consumes one unit of flow, while the third
constraint is flow balance constraint which ensures every inter-medial node connecting
the source and sinks without consuming any units of flow. The LP problem is solved by
a free open source software lp_solv (http://lpsolve.sourceforge.net/). After obtaining the
optimal solution, edges with ci j > 0 are selected to construct the TCFN.

4 Results
Focusing on the transgene, by using the proposed LP model, we constructed transgene

centering functional networks (TCFN) at each time point. In the middle stage of transgene
silent, although transgene was overexpressed, it still performed biological functions and
the TCFN was able to uncover its impact on DE proteins. As showed in Table 1, the size
of TCFN including the number of nodes and edges were large in the early time (around
10 days, the number of nodes was 608 and the number of edges was 707). After this time,
numbers were decreased to between 300 to 400 during 2 month and 5 month. In the last
stage, from 7 months to 11 months, the network was increased to the one containing more
than 1000 nodes. The size of the changes was correlated with the dynamic expression
changes of transgene. The average clustering coefficient of nodes also had the same
dynamical behavior of transgene. The power law test indicated that a TCFN was more
likely to be scale free in the early stage and later stage, both the power law correlation
and R2 were higher than in the middle stage. This means that TCFN was scale-free [2] in
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these two stage. It is well know that many complex real world network, such as Internet,
social relation network, biological molecular interaction network etc. are scale-free. In
such type of networks, the hubs, which were highest degree nodes, play important roles
in network connectivity and robustness [2]. As showed below, hubs in the early and last
stage might have more impact on tumor progression. However, we found that the average
betweenness of nodes present an inverse change. In the middle period, betweenness was
high, while it was low during early and last periods.

Table 1: Topological properties of TCFN

Time # nodes # edges Avg. Clustering Avg. Power law Power law
coefficient Betweenness correlation R2

10 days 608 707 0.027 0.075 0.728 0.801
2 months 352 360 0 0.106 0.655 0.722
3 months 360 360 0 0.109 0.691 0.744
5 months 471 497 0.003 0.1 0.656 0.707
7 months 632 705 0.015 0.087 0.748 0.794
11 months 1052 1469 0.038 0.075 0.779 0.862

In each TCFN, We analyzed hubs which are regard as important nodes. In complex
networks, hubs are nodes with many neighbors, i.e. high degree. After counting the de-
gree of each node, nodes with degree more than 10 in one time point was defined as hubs.
Considering the degree of one node at each time point as a time serious, we clustered the
hubs into clusters with similar dynamic properties by hierarchical clustering with corre-
lation measure and single linkage strategy. As showed in Figure 1, there were 3 clusters
observed. Large proportion of hubs were clustered with transgene into Cluster 2. The
degree of them was high in the early and final time period, but low in the middle. While
Cluster 1 containing only one gene Rb1 which has a particular profile that the degree dur-
ing 10 days and 2 months is constantly low but high in 7 month and 11 month. The two
time intervals might be its two different states. Rb1 is a tumor suppressor and regulator
of cellular proliferation. Its loss of function often occurs relatively late in tumor progres-
sion [4]. Comparing with other tumor suppressing gene Trp53 which has similar profile
with transgene, the lose of activation of Rb1 in the early stage may cause proliferation
and tumor development. Beside, cluster 3 was diverse from other clusters that the degree
was decreased after 10 days to an low level. These genes including Jun, Ephx1, Acat1,
Gsmt4 and Gsmt1 might have important role in the neonatal mice to initiate carcinogenic
process.

In the meantime, the betweenness [7] of each node was analyzed. Betweenness mea-
sures of the centrality of a node within a network that determines the relative importance
of a node within the network. Nodes that occurred on many shortest paths between other
nodes have higher betweenness than those that do not. We calculated all nodes’ between-
ness and selected nodes with betweenness higher than 0.1 at one time point for clustering
analysis as above. The results are illustrated in Figure 2. Similar to hubs, many high
betweenness nodes were clustered with transgene into one cluster. However, profiles di-
verse from transgene expression that in the middle period the betweenness is higher than
early and last. One possible reason is that the proliferation signals from transgene are
mainly transduced by them in the transgene inactive period. Since the proliferation does
not stop this time, these genes, including Crk, Rb1, Jun, Trp53 and Mapk8, may cooperate
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Figure 1: Clusters of hubs of similar degree change profile.

with transgene to elevate the tumor development. Another cluster containing Tnf, Gstm2,
Gstp1, Cyp2c40 and ENSMUSP00000015983 had two peaks in 10 days to 2 months and
5 months to 7 months but low in 11 months. These genes might have two active period
for carcinogenesis. In addition, Ptk2 composing one cluster had high activity in the early
stage which might relate to tumor development initiation.

To analysis closely interacting nodes in the network, we calculated the clustering co-
efficient [7] of each node, which quantifies how close its neighbors are to being a clique
(complete graph). In complex biological networks, nodes with high clustering coefficient
always interact with their neighbors to form functional modules. By setting threshold of
0.1, we selected nodes with high clustering coefficient for clustering analysis. There were
two mainly clusters which have inverse dynamical patterns (results not showed). One was
active in the early period and the other was only active in the last stage. Functional an-
notation of these genes were related to metabolism and other molecular function, which
was different from nodes with high degree or betweenness related to regulation and sig-
nal transduction. On the other hand, proteins with high clustering coefficient were more
likely to form modules. The two clusters of proteins might function by forming modules,
which are groups of proteins interacting closely to each other, to perform particular func-
tions, in neonatal and tumor stage. It should be noted that the cluster of proteins active in
the early stage, might be related to initiate the carcinogenic process.

5 Conclusion
Deciphering the molecular function and mechanism of genes or proteins in the HCC

onset from the systematical perspective is an centering issue in the field of systems biol-
ogy. To achieve this goal, approaches both in experiment and computation are important.
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Figure 2: Clusters of high betweenness proteins.

The high-throughput technologies generate very large amount of data which need compu-
tational methods to integrate them, retrieval biological relevant information and then pro-
pose new hypotheses. In terms of this idea, this paper proposed a network based approach
to identify transgene related functional networks related to carcinogenesis of transgenic
mice. By combining the proteomic mass spectrometry data and interactomic data in a
linear programming model, the regulatory effect of transgene to enhance tumor growth is
inferred by the transgene centering functional networks. Comparing the TCFN in differ-
ent stage, topologically important proteins which are not differentially expressed, such as
cancer related gene Rb1 and Jun, are pointed out with important role. These results have
provided useful insights for further functional mechanism validation. This indicates that
the proposed approach is useful. As solving linear programming is not computationally
costly, it is easy to apply to similar biological problems.
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