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Abstract In the research of biological networks, it is an important problem how to use the 
quantity to identify essential protein-protein interactions. In this paper, a new definition 
"representative value of networks”, denoted as “ RV ”, is presented and applied to analyze 
the topological properties of three protein-protein interaction networks. From calculation we 
find that the relationship between human protein-protein interactions is highly clustered, for 
example, the percentage of value of the top 20% proteins of representative value from high 
to low accounts for 71.96%. The virus-human protein interactions (i.e. virus attacks human) 
are selective. And the attack of the virus also has a high aggregation. These results show that 
the proposed new definition is reasonable and can be considered as an important index for 
analyzing the topological properties of biological networks. 
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1 Introduction 
Protein-protein interaction (PPI) plays a central role in many biological processes 

[1, 2], which not only is the base of normal physiological processes such as DNA 
replication, transcription, translation, metabolism, signal transduction and cell cycle 
control [3, 4], but also plays an important role in pathological processes [5, 6, 7]. In 
the viral infection of the host, it is also essentially expressed as interactions of viral 
proteins and host proteins, inhibiting activity of host proteins or denaturizing host 
proteins. 

With the development in the high-throughput protein interaction detection 
technology such as the Yeast Two-Hybrid (Y2H) technology [8] and the tandem 
affinity purification - mass spectrometry technique (TAP-MS) [9], the 
protein-protein interaction networks of many species as data are uncovered, 
allowing the understanding of the process of life activities from the system-level of 
the protein-protein interaction networks [10, 11, 12, 13]. Access to the interaction 
networks of virus proteins and host proteins can also enable us to understand the 
mechanism of virus infecting host from the network-level and find new ways to 
solve the problems such as the toxicity for the virus which became stronger or 
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weaker, differences among species, and the identification of targets for treatment 
and tumor pathogenesis. 

Calderwood et al. [14] undertook a study for the interaction network of the 
Epstein-Barr virus (EBV) proteins and human proteins, from a broader perspective, 
EBV genes can be classified into two evolutionary classes, a class called the "core" 
genes, which contains conservative genes of the herpes viruses and their sub-classes, 
and the other for "non-nuclear" genes. Prior to that, the interaction networks for 
viral proteins have been reported for vaccinia virus (VV) [15], Varicella-Zoster 
virus (VZV) and Kaposi's sarcoma-associated herpes virus (KSHV) [16] by the 
yeast two-hybrid system. B de Chassey, et al. [17] performed a proteome-wide 
mapping of interactions between hepatitis C virus (HCV) and human proteins by 
Y2H and literature mining, to provide a comprehensive view of the cellular 
infection. 

Recent researches showed that the attacked proteins in the virus-Human protein 
interaction networks have "Hub" characteristics and the higher average connectivity, 
corresponding to play an important role in their life activities [14, 15, 16, 17, 18] 
For the above different viral infection networks, it is obviously a significant 
problem to study whether have some common features in network structure for 
attacking the host proteins of viral proteins. To reflect some common features of 
these networks, in this study, we propose a new definition "representative value of 
networks” based on the degree of networks, denoted as “RV” and conduct a 
comparative analysis of viral infection in the networks. 

2 Data sets and Methods 
2.1 Data sets 

In this study, we use three data sets, the human protein-protein interaction 
network which is composed of 44223 non-redundant PPIs between 9520 different 
human proteins, the HCV-human protein interaction network which contains 481 
HCV-human protein interactions between 11 virus proteins and 338 human proteins 
and the EBV-human protein interaction network which includes 173 different 
EBV-human protein interactions between 40 different EBV proteins and 112 human 
proteins, which are adapted from the literature [17] and [14] respectively. 

2.2 Methods 
The function of a protein can not be completed independently in the cell. Any life 

course is collaboratively completed by many proteins and other molecules together. 
In the interaction network, each protein can be seen as a node and each interaction 
as an edge, which forms a linked network of protein interactions. Thus we can 
research the topological properties of protein interaction networks from the 
perspective of graphic theory [19, 20, 21, 22, 23, 24]. To better compare different 
virus - human protein interaction networks, we introduce a concept "representative 
value". 

Protein-protein interaction network can be defined as a simple undirected graph 
G = (V, E), which has n vertices and m edges. The graph vertex represents a protein 
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and the edge represents the interaction between two proteins.  
Let ),...,2,1(}),(|{ niEvvjI iji =∈=  and ii dI =|| , i.e. the degree of 
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Fig.1 An example of a simple network.    Fig.2 The deletion of P2. 

 
 

We give a simple network as an example shown in Fig.1. The degree of P1, P2, 
P3, P4 and P5 is 3, 3, 3, 2 and 1, respectively. In order to reflect the various protein 
importance, we can vote and score to each protein: because the degree of P1 is 3, 
then the value of each vote of P1 is 1 / 3, and the value of each vote of P2, P3, P4 
and P5 is 1 / 3, 1 / 3, 1 / 2 and 1 / 1, respectively. If Pi votes for Pj, then Pj obtains 
the corresponding value of the vote. At the same time, the representative value of 
P1 is P2 + P3 + P4 = 1 / 3 +1 / 3 +1 / 2 = 1.1667. The rest may be deduced by 
analogy, the representative values of P2, P3, P4 and P5 are P1 + P3 + P5 = 1 / 3 +1 / 
3 +1 / 1 = 1.6667, P1 + P2 + P4 = 1 / 3 +1 / 3 +1 / 2 =1.1667, P1 + P3 = 1 / 3 + 1 / 3 
= 0.6667 and P2 = 1 / 3 =0.3333, respectively. The order of these nodes by " RV " is 
P2> P1 = P3> P4> P5, which is different from the order with the degree of nodes 
( P2 = P1 = P3> P4> P5). We can find that the node with the same degree possibly 
has different RV. In this simple network, it is obvious that three nodes P1, P2 and P3 
have the same importance according to the degree. In fact, P2 is more important 
than P1 and P3 because if P2 is inhibited and lost its function, then the impact is not 
just P2 itself, and P5 will also be affected, whose function will be lost because at 
this time the only interaction with other nodes is cancel (Fig.2). Therefore, we could 
distinguish P2 from P1 and P3 by calculating the RV. In addition, this definition 
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also has an advantage, that is, the mean of the RV of all nodes in the whole network 
is always 1. When the virus proteins select to interact with the human proteins 
which have high representative value, then the mean of the RV of the sub-network 
of virus-human interaction will be higher than 1. Accordingly, a higher " RV " can 
be argued that the connectivity of the node in the network is more intense and the 
node is often more important. 

3 Results 
Here we calculate the RV of above three networks and list the names of the top 5 

proteins of RV from high to low. We also calculate the percentage of total value of 
the top 20% proteins of RV from high to low and the results are shown in Table 1, 
Table 2 and Table 3, respectively.  

The obvious feature of human protein-protein interaction network is highly 
clustered, for example, the percentage of value of the top 20% proteins of 
representative value from high to low accounts for 71.96%, which is similarity to 
the result of "Hub" characteristics [18]. 

From Table 1, the protein SLC2A4 has the highest RV, which is probably related 
with its structure and function. SLCA2A4, a kind of protein involved in the glucose 
transport, is widespread in Skeletal and cardiac muscles, brown and white fat. The 
protein localizes primarily to the perinuclear region, undergoing continued 
recycling to the plasma membrane where it is rapidly reinternalized. The dileucine 
internalization motif is critical for intracellular sequestration. [25] From Table 2 and 
3, we are lucky to find that HCV and EBV don’t interact with the human protein 
SLC2A4, defects in which may be a cause of noninsulin-dependent diabetes 
mellitus (NIDDM), or a cause of certain post-receptor defects in NIDDM, 
Otherwise, hepatitis and herpes disease would be more serous than we thought. [26, 
27, 28]. The second highest RV protein ATXN1, which Locates cytoplasm or 
nucleus, also expresses widely throughout the body. ATXN1 may be involved in 
RNA metabolism, Defects in ATXN1 are the cause of spinocerebellar ataxia type 1; 
also known as olivopontocerebellar atrophy I (OPCA I or OPCA1). Spinocerebellar 
ataxia is a clinically and genetically heterogeneous group of cerebellar disorders. 
[29, 30, 31]. 

YWHAG, UBQLN4, etc., also the characteristics of the protein in the body exists 
in most organizations, to interact with many proteins, some biological features 
common to complete, and therefore high RV value [31, 32]. Of course, low RV does 
not mean that the protein is not important, only because of its structure or its 
expression in some exceptional cases to complete certain specific features with 
other proteins together. The protein PGCP, a kind of plasma glutamate 
carboxypeptidase, for example, which RV is only 0.0012, up-regulated in the 
majority of hepatitis C virus-associated hepatocellular carcinoma [33]. Perhaps the 
low RV could also be the false negative test result because the interaction with other 
proteins is not detected in these experiments. 

The virus-human protein interactions (i.e. virus attacks human) are selective, and 
the virus protein interacts often more easily with the high RV of human protein 
( such as human protein interaction with HCV, the mean of RV for HCV-human 
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protein interaction sub-network is 2.8749 and the mean of RV for EBV-human 
protein interaction sub-network is 2.9039). TGFBR1, for example, which has higher 

RV, forms a receptor complex consisting of two type II and two type I 
transmembrane serine/threonine kinases [34]. Defects in TGFBR1 will lead to 

vascular disease [35, 36, 37], and will enable Hepatitis patients face yellow and thin, 
which is consistent with Hepatitis symptoms. Although the RV of GAA or PRRC1 
is very low (0.0012), they are essential to liver function and are expressed in liver. 
Defects in them will cause to liver disease, one of which is hepatitis [38, 39, 40]. 
The attack of the virus also has a high aggregation, such as human protein 

interaction with HCV, of which 20% of the protein its RV accounts for 74.40%, and 
interaction with the EBV, of which 20% of the protein its RV accounts for 71.75%. 

4 Conclusions 
From these results, we can see that the purpose of the protein-protein interaction 

is strong. When the virus invades the body, the virus proteins often interact with the 
human proteins which have high RV, and inhibit the activity of these host proteins 
or alter their activity. Thus this causes to degrade their corresponding functions of 
these proteins. If the proteins which have high RV and tend to play more important 
role in normal physiological processes lose their functions, the body is possibly in 
the disease state. In conclusion, the proposed new definition is reasonable and can 
be considered as an important index for analyzing the topological properties of 
biological networks. 
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