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Abstract For time series gene expression data, it is an important problem to find subgroups of
genes with similar expression pattern in a consecutive time window. In this paper, we extend a
fuzzy c-means clustering algorithm to construct two models to detect biclusters respectively, i.e.,
constant value biclusters and similarity-based biclusters whose gene expression profiles are similar
within consecutive time points. Finally, we verify our methods on several artificial datasets.
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1 Introduction
In analyzing data of DNA microarray experiments, it is important to find groups of

genes that share similar expression patterns which characterize a special cellular processes
at a specific period [1, 2]. In many situations, a cellular process is active only under a sub-
set of conditions. However, classical clustering techniques such as hierarchical clustering
and k-means clustering are generally not designed to detect co-activated gene groups un-
der specific conditions or time periods.

In recent years, biclustering algorithms have been suggested to identify local patterns
in gene expression data. The local pattern, called bicluster, is defined as a subset of
genes that exhibit compatible expression pattern over a subset of conditions, often means
a transcription module or an active pathway. There exist many biclustering methods,
including CC algorithm [3], coupled two-way clustering [4], ISA [5], SAMBA [6], Bimax
[7] and so on. Many of them are also available from their websites.

In this paper, we focus on detecting biclusters in time series gene expression data. The
difference from biclusters in ordinary gene expression data, i.e., sample data, is that the
condition of the data is time points, i.e., time series data. In other words, the subset of
the conditions in a bicluster must be consecutive, i.e., we face with a bicluster problem
with a constraint on time horizon. Specifically, we introduce a framework named fuzzy c-
means clustering algorithm [8] to solve such a constrained bicluster problem. By adding
a penalty term to guarantee consecutive time points in one bicluster and defining new
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weight variables, we aim to detect two types of biclusters based on different distance ex-
pressions: one is the constant value bicluster and the other is the similarity-based bicluster
whose gene expression profiles are similar within consecutive time points.

Next, we first introduce our methods in detail, and then provide several numerical
examples to verify our models.

2 Methods
A microarray dataset can be seen as a N×M matrix, each row is the profile of a gene

in all conditions and each column is an array for all the genes in a condition. There are N
genes and M time points, generally N�M. We want to find K meaningful biclusters in
the matrix and each bicluster is formed as a submatrix {Ni,Mi} for i = 1, ...,K, Ni is the
subset of genes and Mi is the subset of conditions for the ith bicluster. In our model, the
condition is time point, and therefore the time points in a bicluster must be consecutive,
i.e. Mi should consist of consecutive time points. Firstly we simply introduce the fuzzy
c-means algorithm, which is a classical clustering algorithm by partitioning the rows only.

The objective function of fuzzy c-means clustering is as follows:

min P(U,Z) =
K

∑
l=1

N

∑
i=1

uα
i,ldi,l

subject to 



di,l = ‖xi− zl‖2, 1≤ i≤ N,1≤ l ≤ K
K
∑

l=1
ui,l = 1, 1≤ i≤ N

0≤ ui,l ≤ 1, 1≤ i≤ N,1≤ l ≤ K

• ui,l is the rate that object i is allocated to cluster l. zl is the centroid of cluster l.

Fuzzy partitioning is carried out through an iterative optimization of the objective
function shown above, with the update of membership ui,l and the cluster centers z j:





ui,l =
1

K
∑

k=1
(

di,l
di,k

)
2

α−1
, 1≤ i≤ N,1≤ l ≤ K

zl =

N
∑

i=1
uα

i,lxi

N
∑

i=1
uα

i,l

, 1≤ l ≤ K
(1)

Based on the above fuzzy c-means algorithm we propose two models. In our first
model, we define every centroid of a bicluster as a value, add a penalty term to guarantee
consecutive time points in one bicluster and further define a new weight variable. In our
second model, the penalty term and new weight variable are also added and we modify
the distance definition. To avoid high false positive results which are hard to be solved by
many biclustering algorithms, we introduce an additive bicluster to store outliers in both
models.
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2.1 Model 1: detection of constant value biclusters in time series gene
expression data

This model aims to detect the constant value biclusters in time series gene expression
data. We utilize a fuzzy c-means algorithm to divide the data into K biclusters, where
we generally use a large value as K. The objective function of the bicluster problem with
variables (U,W,Z) is given as follows:

min P(U,W,Z) =
K+1

∑
l=1

N

∑
i=1

M

∑
j=1

uα
i,lwl, jdi, j,l +β

K

∑
l=1

(wl,1 +wl,M +
M−1

∑
j=1
|wl, j−wl, j+1|) (2)

subject to




di, j,l = (xi, j− zl)
2, 1≤ i≤ N,1≤ j ≤M,1≤ l ≤ K

di, j,K+1 = D, 1≤ i≤ N,1≤ j ≤M
K+1
∑

l=1
ui,l = 1, 1≤ i≤ N

0≤ ui,l ≤ 1, 1≤ i≤ N,1≤ l ≤ K +1
M
∑
j=1

wl, j = 1, 1≤ l ≤ K +1

0≤ wl, j ≤ 1, 1≤ j ≤M,1≤ l ≤ K +1.

(3)

• U is an N×K partition matrix and ui,l is between 0 and 1, indicating the rate that
object i is allocated to bicluster l. Here α is set to be greater than 1, thereby allow-
ing that a gene can belong to several clusters. In our model we set α = 2.

• W is an (K + 1)×M partition matrix, and wl, j is a weight for the jth time point
of the lth biclusters. This is the main difference between this model and fuzzy c-
means clustering, because fuzzy c-means clustering just has weights for rows, i.e.
U . Thus there is a general weight uα

i,lwl, j for every data point xi, j of each bicluster l.

• Z = {z1,z2, · · ·,zK} is a set of K values representing the centroids of K biclusters.

• di, j,l = (xi, j − zl)
2 is the distance between the data point xi, j and the centroid zl .

Here we use the Euclidean distance expression just like in ordinary k-means algo-
rithm. For the additive bicluster, d is a constant value: di, j,K+1 = D, which means
that if the distance between a data point and any centroid is larger than D, then the
data point is a outlier and belongs to the additive bicluster. There is no centroid for
the additive bicluster.

• The penalty term wl,1+wl,M +∑M−1
j=1 |wl, j−wl, j+1| is used to measure the total vari-

ation of the time variable weights at the lth bicluster. The idea is to give a piecewise
constant function on wl, j. This also enables us to determine a consecutive window
of time variables in a bicluster. Also β is a parameter for controlling the strength
of forming a piecewise constant function on wl, j. Edge effect is also considered in
this term. There is no need to penalize the additive bicluster, so wK+1, j =

1
M
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The above optimization problem is a large scale nonlinear mathematical programming
and is generally difficult to be solved directly. In this paper, we adopt a decomposition
scheme to solve this problem, i.e., this problem can be minimized by iteratively solving
the following three sub-problems.

2.1.1 Problem 1: Fixing Z = Ẑ,W = Ŵ and solving the reduced problem
minU P(U, Ẑ,Ŵ )

For U :

min P(U,Ŵ , Ẑ) =
K+1

∑
l=1

N

∑
i=1

M

∑
j=1

uα
i,lŵl, jd̂i, j,l

subject to




d̂i, j,l = (xi, j− ẑl)
2, 1≤ i≤ N,1≤ j ≤M,1≤ l ≤ K

d̂i, j,K+1 = D, 1≤ i≤ N,1≤ j ≤M
K+1
∑

l=1
ui,l = 1, 1≤ i≤ N

0≤ ui,l ≤ 1, 1≤ i≤ N,1≤ l ≤ K +1

The solution is given as follows:

ui,l =





1, if Xi = ẑlI
0, if Xi = ẑhI, h 6= l

1
k

∑
h=1

[
d(Xi, ẑlI)
d(Xi, ẑhI)

] 1
(α−1)

, if Xi 6= ẑlI and Xi 6= ẑhI, 1≤ h≤ k. (4)

where d(Xi, ẑlI) is the aggregated distance between the ith gene and the lth centroid, and
is given by

d(Xi, ẑlI) =
m

∑
j=1

ŵl, jd̂i, j,l .

2.1.2 Problem 2: Fixing Z = Ẑ,U = Û and solving the reduced problem
minW P(Û , Ẑ,W )

For W :

min P(Û , Ẑ,W ) =
K+1

∑
l=1

N

∑
i=1

M

∑
j=1

ûα
i,lwl, jd̂i, j,l +β

K

∑
l=1

(
M−1

∑
j=1
|wl, j−wl, j+1|+wl,1 +wl,M)

subject to




d̂i, j,l = (xi, j− ẑl)
2, 1≤ i≤ N,1≤ j ≤M,1≤ l ≤ K

d̂i, j,K+1 = D, 1≤ i≤ N,1≤ j ≤M
M
∑
j=1

wl, j = 1, 1≤ l ≤ K +1

0≤ wl, j ≤ 1, 1≤ j ≤M,1≤ l ≤ K +1.

This optimization problem can be solved using linear programming techniques.
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2.1.3 Problem 3: Fixing U = Û ,W = Ŵ and solving the reduced problem
minZ P(Û ,Z,Ŵ )

After deriving the parameters during the first two steps, we can update the centroids
with the new parameters by solving the problem:

minP(Û ,Z,Ŵ ) =
K

∑
l=1

N

∑
i=1

M

∑
j=1

ûα
i,lŵl, j(xi, j− zl)

2

The solution is given as follows:

zl =

M
∑
j=1

N
∑

i=1
ûα

i,lŵl, jxi, j

M
∑
j=1

N
∑

i=1
ûα

i,lŵl, j

, for 1≤ l ≤ K (5)

2.1.4 Algorithm
Hence, the algorithm is as follows. Note that the gene expression matrix should be

normalized before the computation.

• Step 1: Given initial Z and W . We can choose initial Z randomly or with experi-
ences, and 1

M for initial wl, j.
• Step 2: Solve problem 1 with given Z and W to get a new U .
• Step 3: Solve problem 2 with given Z and U to get a new W .
• Step 4: Solve problem 3 with given W and U to get a new Z.
• Step 5: Repeat steps 2-4 until our objective function is minimized. Now we can

obtain the optimal Z, W and U .
• Step 6: Decide biclusters. For any data point xi, j, compare the weight uα

i,lwl, j be-
tween the data point and all the biclusters. This data point belongs to the bicluster
P:

P = argmax
l

uα
i,lwl, j

Because we decompose the nonlinear optimization problem into several sub-problems,
many local optimal solutions will emerge depending on different initial values, especially
different Z. A straightforward way to alleviate this problem is that we compute repeatedly
with different initial values and choose the solution with the minimal object value.

2.2 Model 2: detect biclusters with similar gene expression profiles
However, in many cases, the important biclusters are those in which the gene profiles

are similar. These biclusters reflect more general co-regulatory or co-expression relation-
ships among genes. For this purpose, we modify the first model, i.e. model 1, as follows:

• The centroid of every bicluster is a M vector: Zl = [zl,1,zl,2, ......,zl,M], and zl, j is
the gene expression of the centroid of bicluster l at time j. Z = {Z1,Z2, ......ZK} is
a set of K vectors representing the centroids of the K biclusters.
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• The distance is defined to be the angle between the data point vector and the cen-
troid vector:

d
′
i, j,l = θ(Xi, j,Zl, j) =

180× arccos 〈Xi, j ·Zl, j〉
|Xi, j |·|Zl, j |

π
Xi, j = [xi, j−1,xi, j] is the data point vector, Zl, j = [zl, j−1,zl, j] is the centroid vec-
tor and 〈Xi, j ·Zl, j〉 is the inner product. The distance depicts the similarity of the
different gene profiles even if they have different expression values.

Except for the distance expression and the defination of the centroids, the objective
function is unchanged. We also decompose the optimization problem into three sub-
problems, where the first two sub-problems (Problem 1 and Problem 2) are solved sim-
ilarly to model 1 except for the different distance expression and the centroids. But the
third sub-problem should be solved in a different manner as follows.

2.2.1 Problem 3
′ : Fix U = Û ,W = Ŵ and solve the reduced problem

minZP
′
(Û ,Z,Ŵ )

For Z:

min P
′
(Û ,Z,Ŵ ) =

K

∑
l=1

N

∑
i=1

M

∑
j=1

ûα
i,lŵl, jd

′
i, j,l

Intuitively the derived centroid vector Zl, j is in proportion to a vector that is a linear
combination of N data point vectors, and the coefficients of the combination are based on
the parameters that we got from the first two sub-problems.

Firstly we unitize the data point vector by X
′
i, j =

Xi, j
|Xi, j | , and the solution is given as

follows:

Z
′
l, j =

N
∑

i=1
ûα

i,lŵl, jX
′
i, j

N
∑

i=1
ûα

i,lŵl, j

zl, j =
zl, j−1

z′l, j−1
× z

′
l, j for 1≤ l ≤ K,1≤ j ≤M (6)

The procedure of this model is similar to model 1. This model may also generate large
amount of local minimal solutions. Therefore, we repeat the computation by different
initial values or adopt other methods of selecting initial values.

3 Result
We tested our models using simulated data. Firstly we generated a synthetic dataset,

including three constant value biclusters: biclusters 1 and 2 are up-regulatory modules,
where bicluster 3 is a down-regulatory module. There are overlaps between biclusters 1
and 2. To test noise resistance of our method, we embedded the biclusters into a noisy
background generated by a uniform distribution U(1,9). Gaussian noise with variance of
0.1 was used to degrade the biclusters. The dataset has 50 rows and 10 columns, where
biclusters 1 and 2 are 10× 4 matrices, and bicluster 3 is a 15× 4 matrix. We chose the
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Figure 1: An example for model 1. (a): A synthetic dataset. There are three biclus-
ters in the dataset and we also consider the overlaps and noises. (b): The result of
our method. The parameters are: β = 2,D = 4,K = 5, and the initial centroids are
{1,3,5,7,9}. The elements in the matrix are the labels of biclusters, and the final cen-
troids are {1.03,4.51,4.93,8.95,8.98}. We can find bicluster 1 with centroid 1.03 and
bicluster 4 and 5 with centroid near 9.

proper parameters (β = 2,D = 4,K = 5) by trial-and-error method, and used model 1 to
detect biclusters. The results are shown in Fig.1, which shows that our model can identify
all the biclusters.

Then, for testing the computational efficiency of our method, we generated a large
gene expression dataset with 10000 genes and 100 time points. The result show that our
model can also identify the biclusters correctly in a few minutes.

Finally, we generated a small example to examine the model 2. The dataset is com-
posed of 20 genes and 8 time points. The elements representing the gene expression value
which is generated by the uniform distribution U(1,9). Gaussian noise with variance of
0.1 was used to degrade the bicluster. We construct only one bicluster whose 8 genes
change similarly within 4 time points. Clearly, our method can identify the bicluster, see
Fig.2.

4 Discussion
We have tested our models in several simulated datasets. The numerical results show

that the models are robust to noises and efficient in large-scale computations.
In our future work, we will focus on applying our model to real microarray data or

other high throughput data to identify meaningful biclusters.
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Figure 2: An example for model 2. (a): A synthetic dataset. There is only one bicluster
in which gene profile is [2,8,4,2] and we also consider the noises. (b): The result of
our method. The parameters are: β = 8,D = 20,K = 3. We can find bicluster 2 whose
centroid is [2.22,7.99,4.02,2.19] within the first four time points.
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