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Abstract  We propose new developments of global network scoring methods previously 
introduced to estimate the importance of genes in diseases. We apply these methods to drug 
proteomics profiles, which consist of drug targets, to determine the part of the human 
interactome perturbed by a drug. Drug and disease network scores can be combined to obtain 
novel side-effect and pathway association prediction strategies. We illustrate our methods 
comparing four kinase inhibitor profiles (dasatinib, bosutinib, imatinib, bafetinib) ranging 
from very promiscuous to highly specific. We predict and identify the cause of plausible 
side-effects of bosutinib. 
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1 Introduction 
To understand the mechanisms of action of drugs and to be able to predict in 

silico their potential side-effects is of prime importance in drug discovery and 
molecular medicine. In addition to the obvious benefit of developing better and 
safer drugs, emergence of resistance to treatment, e.g. in cancer, further calls for 
detailed modeling of drug actions to adapt clinical practice to patient specificities. 

Proteomics approaches combining drug affinity purification techniques (AP) 
and tandem mass spectrometry (MS/MS) make it possible to measure drug targets 
in cell lines or patient material in an unbiased manner [1-3] as opposed to classical 
binding assays. Such analyses usually reveal larger than expected target spectra, 
thus making obsolete the naïve view of a single main target. Such complex target 
spectra can be used to understand the interaction between drugs and patients at a 
molecular level. In order to try identifying mechanisms of action and side-effects, 
we adopt a systems biology view, hence considering drug target spectra in the 
context of the whole human interactome or pathways [4]. 

The analysis of genetic data, e.g. WGA screens, often requires the identification 
of relevant gene(s) from a rather large portion of the genome, i.e. from a long list of 
non relevant genes. To link the candidate genes with previously known 
disease-associated genes through protein-protein interaction (PPI) data has been 
shown to be promising [5]. Nonetheless, in such networks, certain proteins are 
highly connected (hubs) and it is unclear whether their many interacting partners 
retain any specificity for the disease, see Figure 1. Therefore, global scores, taking 
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the whole interactome topology into account and limiting the importance of hubs 
have been proposed [6]. 

Recently, Berger et al. [7] used a 
related method to associate drugs with a 
heart pathology (EQTS) that is often 
observed as side-effect. They postulated 
that if a drug targets disease causing 
genes, then side-effects similar to the 
disease phenotype can be expected. They 
first assigned relevance (global) scores to 
genes from known genes causing EQTS. 
Then, only considering drug target genes, 
they took the maximum disease relevance 
score as a measure of side-effect risk. 

Although Berger et al. obtained 
satisfying results testing many drugs with 
target spectra taken from public databases, 
certain kinase inhibitors can have a large 
number of targets and to only consider a single one is risky, especially if the targets 
synergize with each other. It is also important to mention that target spectra from 
public sources are often quite incomplete and thus small. Moreover, we want to 
exploit information regarding drug-target affinities, which can be estimated from 
the proteomics data or available from other sources. 

Therefore, we introduce a novel disease/drug association score combining the 
influence of a drug and a disease over the human interactome. Our score statistical 
significance is explicitly determined. We show the improvement brought by the new 
scores and use them to predict dasatinib, bosutinib, imatinib, and bafetinib relative 
efficacy in chronic myeloid leukemia (CML) treatment and new areas of application. 
We finally adapt the our score to search KEGG [8] and identify likely side-effects 
of Bosutinib.  

2 Materials and Methods 
2.1 Generation of Experimental Data 

Drug profiles were obtained from K562 cells. Compounds have been modified 
to be coupled to NHS-activate Sepharose beads and drug affinity purification has 
been performed following a protocol described in previous publications [2, 9, 10]. 
Pulldown samples were submitted to mass spectrometry (MS) analysis and 
bioinformatics protein identification. Elimination of non-specific binders has been 
achieved by subtracting pulldown data of unrelated compounds (kanamycin, 
daunorubicin, ciprofloxacin, amphotericin B, paroxetine) and considering kinases 
only (except NQO2 for imatinib [1]). There were no direct measurement of drug 
affinities but we have shown that proteomics data, e.g. protein sequence coverage, 
can provide a good estimate of IC50 values [10], which we use then as a proxy for 
binding strengths. 

 

Figure 1. Seed node influencing its 
neigh-bors. Second interactor T is still 
specific, though P1,…,P11 have lost specificity 
because of C high degree of connectivity. 
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2.2 Network Scores 
Scores associating a handful of seed nodes with the rest of the network through 

random walks have been described by other authors already [6, 7, 11]. We use the 
method of Köhler, et al.: Given a human interactome represented as a graph 

),( VEG =  and a set S of k seed (disease causing) genes { } VvvS
kss ⊂= ,,

1
 , we 

define initial node probabilities  x0, with kxi /10 = if { }kssi ,,1 ∈ , 00 =ix otherwise. 
We then define a random walk (Markov chain) with restart 01 )1( rxPxrx nn +−=+ , 
with P the row-normalized adjacency matrix of G and [ ]1;0∈r . The relevance of 
genes in V, with respect to S, is defined by the steady-state probability vector x∞. 
This algorithm is similar to “PageRank with Priors” [11]. Köhler et al. have shown 
good performance in finding disease associated genes (AUROC>90%, one disease 
gene removed from S). We do not repeat these validations here. Chen et al. have 
shown that r=0.3 is a good (robust) choice. 

Given a drug target profile S’, we can apply a similar iteration assigning initial 
probabilities x’0 proportional to protein sequence coverage. The latter is an 
approximation of the protein abundance [12] in the pulldown sample and it is 
correlated to the real affinity with the compound [10]. 

Probabilities in x∞ and x’∞ are defined over the whole set V and we can naturally 
multiply these vectors to measure how a drug impacts the human interactome under 
the influence of a disease. A natural global score for disease/drug interaction would 
thus be the inner product I = < x∞,x’∞>, which sums all the node scores. To avoid 
introducing excessive noise in the global score, we first determine significant 
sub-graphs spanned by x∞ and x’∞: by means of bootstrap simulations we estimate 
critical node probabilities at the α level of significance (α=5% typically). We thus 
obtain sub-graphs ),( SSS VEG = and ),( ''' SSS VEG = and we set to 0 the probabilities 
of nodes not in the significant sub-graphs: 
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The score is finally given by the inner product Ilocal = <Diseaselocal,Druglocal>. We 
also consider an extremely localized score Imax defined as the maximum of 
component wise product of Diseaselocal and Druglocal. It informs on the strongest 
protein/drug pair. We name the score of Berger et al. Isingle. 

P-values for global scores are obtained by a bootstrap on the drug network. 
Random scores fit a Gamma distribution accurately, which is hence used to 
compute P-values. 

The human interactome G was built integrating the IntAct, HPRD, MINT, and 
BioGRID databases [13-16], complemented with Bcr-Abl interactions measured by 
our laboratory [17]. All the protein accession codes were mapped to 
UniProtKB/SwissProt and we obtained 11,406 nodes and 71,387 edges. We 
extracted the maximum connex component to define G (11,303 nodes, 71,328 
edges). 

All the computations were implemented in R with some data preparation in Perl. 
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3 Results 
3.1 Score Performance 

Köhler et al. introduced a list of 110 manually curated disease-gene associations 
[6]. We used this list to generate disease networks. As CML is not present in this list, 
we complemented it with a CML network generated by BCR-ABL, STAT5, and 
Gab2 [18-20]. We also generated drug networks for the four kinase inhibitors on the 
basis of our proteomics data and scored disease associations. Table 1 reports 5% 
significant diseases by giving their rank as obtained with Ilocal. The first 4 non cancer 
diseases are together with most cancers in a strong cluster if one computes a disease 
distance similarity matrix with the same global scores. It is thus not a surprise they 
are not well separated from cancers. The next 3 listed are their immediate neighbors 
in the next cluster. Only the last 3 are really non related. 

 
Table 1. Ranks (Ilocal) of the diseases selected at a 5% false positive rate. For CML, 
we indicate in brackets the rank obtained adding Lyn to the disease causing genes. 
Grayed cells indicate current clinical trials (ClinicalTrials.org). (*) Dasatinib CML 
rank with LYN is close to one as the scores of first and second positions are almost 

identical.  

 
 
We found that the local score Ilocal gave better results than I. We have also 

observed the score Isingle of Berger et al. did perform worse. It is worth noting they 
used mean first passage times as relevance score and we used steady-state 
probabilities. 

Isingle score performed better always giving CML with rank 1 but it was more 
distracted by the closest 5 non cancer diseases and reported much weaker cancer 
associations. Its good performance on CML is due to the fact that one of the causing 
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genes (BCR-ABL) is a strong target of all 4 compounds. If strong targets are not used 
as seeds, such as in the discovery of side-effects, it is likely not to happen and we 
conclude that Isingle is a worse choice. Scores I and Imax were worse in ranking CML 
first and other cancers at the top. 

3.2 Comparing Four Kinase Inhibitors 
The four compounds we consider in this study are very different. Imatinib was 

designed to be extremely specific and, accordingly, it only targets a few proteins. 
Dasatinib and bosutinib have been designed as dual SRC/BCR-ABL inhibitors. 
However, subsequent analysis, by us and others, has shown that they target a wide 
range of tyrosine, receptor tyrosine, and serine/threonine kinases in CML cells at 
relevant drug concentrations. Bafetinib, on the other hand, is based on the imatinib 
structural scaffold and achieves higher target selectivity than Dasatinib and Bosutinib, 
while retaining the ability to potently inhibit BCR-ABL and certain SRC family 
kinases, such as LYN that participates in maintaining the disease in certain blast 
phase imatinib resistant patients [21]. 

 
 

 
 

Figure 2. CML network with the kinase inhibitors targets. Several targets are part of 
CML network but only BCR-ABL is strongly relevant (color reflects relevance, red 
highly relevant, white at the lowest limit of significant relevance). Non CML 
relevant targets are in blue. To include Lyn as one disease causing gene turns it into 
a strongly relevant node in the “interface” grey ellipse and remodel the CML 
network (1/3 larger and more connected). 
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To be able to generate a global approximation of the disease influence over the 
whole human interactome, gives us the opportunity to compare these 4 compounds in 
the context of the disease. We have generated comparative target profiles of all 4 
compounds with estimated affinity strengths and color-coded disease relevance 
(Figure 2). We see that several targets are entry points into the CML network, but of 
these only BCR-ABL is sufficiently relevant for CML. 

We can apply our score Ilocal to compare treatment efficacies. To normalize Ilocal 
for the variable number of targets we assume that compounds are available a 
sufficient concentrations in patient cells to bind with their interactors only based on 
their affinity (very likely to be true given measured maximum blood concentrations). 
Therefore, we multiply Ilocal of each drug by the sum of the target sequence coverages 
and we obtain that drugs are ranked as 
 
      dasatinib (Ilocal=0.11) > bafetinib (0.09) ≈ bosutinib (0.07) > imatinib (0.05) 
 
which matches clinical observations and further indicate that our score captures a 
reasonable part of the disease-drug association. 

 
Figure 3. The Bosutinib network with targets depicted as triangles and drug strength 
of influence color coded (red=strong). Proteins located in the selected immune 
system pathways are represented with larger nodes. Main immune system related 
targets are named with – in brackets – the number of interactions with other 
immune system proteins found in the bosutinib network. BCR-ABL is isolated in 
this context. PRKAA1 is involved in the endocrine system interaction. 
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3.3 Bosutinib and Focused KEGG Searches 
Dasatinib has been shown to impact the immune system [22, 23]. Bosutinib that 

is even more promiscuous and used at higher maximum blood concentrations 
(500nM vs 100nM) is likely to have side-effects as well, in particular on the 
immune system. We also indicated in a previous work that it might interact with the 
endocrine system additionally [10]. 

Köhler et al. list was not appropriate to identify such side-effects. We rather use 
KEGG as it contains many signaling and metabolic pathways. To directly use the 
target list for classical pathway enrichment analysis in KEGG is too local and 
neglects extended influence of the drug. To use the human interactome to collect all 
bosutinib targets direct interactors yields an enormous list of 1306 proteins, whose 
relations with the drug are unweighted, and 69 pathways at the 5% significance 
level. This is too unspecific. 

We adapted Ilocal score by summing the drug network steady-state probabilities 
over the proteins included in a given pathway. We naturally find cancer pathways 
(CML, ErbB signaling, Pathways in cancer) and several cell growth and 
proliferation pathways. We selected all the immune system pathways included in a 
5% significant list of hits and (B cell receptor signaling, Fc epsilon RI signaling, Fc 
gamma R-mediated phagocytosis, Chemokine signaling, Toll-like receptor signaling, 
Natural killer cell mediated cytotoxicity, and RIG-I-like receptor signaling) and we 
annotated the bosutinib network to localize their interaction. See Figure 3. We did 
the same with the two endocrine system pathways identified: GnRH and Insulin 
signaling. 

We note the strong interaction of bosutinib with immune system actors and 
notably LYN and BTK that play an important role in dasatinb immune system 
side-effects [22, 23]. We also note important roles of TBK1 [24] and SYK [25, 26] 
in immunodeficiency. Potential interaction with the endocrine system is more 
localized and mediated by PRKAA1, which regulates fatty acids and cholesterol 
synthesis and is considered as a stress-sensing metabolic regulator. 

4 Discussion 
We have introduced novel drug/disease association methods by extending the 

use of global network scores to drug profiles integrating information about protein 
drug affinities. Such affinities were obtained from semi-quantitative proteomics 
data but the method presented could also take more precise measurements, e.g. 
affinity constants or IC50’s. Since we define drug and disease global score as 
probabilities, the two can be naturally combined to measure coincidence of disease 
and drug influence over an interactome. Disease and drug network sizes are defined 
by means of statistical significance. We have shown that the new disease-drug score 
performs competitively. 

Comparison of 4 kinase inhibitors used in CML treatment in the context of the 
CML network show that broad spectrum compounds are not likely to be 
advantageous as BCR-ABL is their only highly relevant target, which is confirmed 
by existing unpublished data of our institute. Additional targets such as LYN can be 
useful in certain resistant cases but, in general, they are more likely to cause 
side-effects or open opportunities for additional indications. In Table 1, we note that 
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several clinical trials are running for imatinib, dasatinib, and bosutinib in cancer 
types highly ranked by our score. In particular, Table 1 suggests testing the 4 
compounds against hepataocellular carcinoma and bafetinib against lung and breast 
cancers. 

Finally, adapted drug global scores allowed us to search for side-effects against 
KEGG pathways and we could find strong indication that bosutinib has an effect on 
the immune system as dasatinib does. 

To conclude, we believe that the global scores pioneered by Köhler et al. and 
Berger et al., are useful to understand interactions with diseases and potential 
side-effect. Our work extended their ideas and proposed new tools for 
understanding drug mechanisms of action at a system level. 
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