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Abstract Interactions between genes and proteins can be revealed by multiple experimental 
platforms. The derived interaction networks can be utilized to discover novel genes involved 
in specific biological process. E-MAP is an experimental platform to measure genetic 
interactions in a genome-wide scale, which successfully recovered known pathways and also 
revealed novel protein complexes in S. cerevisiae. However, E-MAP data can be quite noisy, 
and it is of great challenge to make reliable biological inference based on it. Here we propose 
a novel approach which aims to discover genes involved in the cell cycle process in S. 
cerevisiae by combining E-MAP data with other sources of data, such as gene expression, 
protein phosphorylation, and transcription factor (TF)–DNA binding. From an E-MAP screen 
with 35 query genes, we predict three unknown genes (YPL158C, YPR174C and YJR054W) 
as potential cell cycle genes. Our strategy can be applied to other biology processes as well. 
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1 Introduction 
Two genes are defined as "genetically interacting" when the phenotype generated 

as the result of mutations in both genes is unexpectedly not just a combination of the 
phenotypes of the two single mutants. Deciphering genetic interaction networks not 
only reveals the wiring diagram of biology processes, but also predict novel genes 
involved in certain processes. Recently, several high-throughput technologies have 
been developed to identify genetic interactions in the genome scale, including 
Synthetic genetic array (SGA) technology [18], diploid based synthetic lethality 
analysis on microarrays (dSLAM) [19], and Epistatic miniarray profile (E-MAP) [8]. 
The former two approaches aim to identify synthetic sick or lethal interactions (also 
known as negative interactions), which means the double mutant is lethal or sicker 
compared with the corresponding single mutants. Assuming that the expected 
phenotype of a double mutation is the additional effects of the single mutations, 
E-MAP, an adaptation of SGA, gains power by identifying negative interactions as 
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well as positive genetic interactions, which indicates the double mutant is healthier 
than expected. 

Here, we exploited the E-MAP methodology to discover novel genes involved in 
the cell cycle process in the budding yeast. The distinct advantage of using E-MAP is 
the potential to discover functionally associated genes which are not physically 
interacting. These associations are unlikely to be revealed by physical interaction 
assays such as yeast two hybrid system and DNA-binding microarrays. 

Despite the superiority of E-MAP, interpretation of the data is still challenging. 
First, genetic interactions occur both between and within functional modules. Thus, 
the function of a gene cannot be determined as the function of its interacting partners. 
Second, E-MAP suffers from high false positive rate and high false negative rate. In 
another word, the data is quite noisy, which makes it difficult for inference. In this 
case, integration of external information, such as gene expression, is necessary for 
identifying novel genes involved in the cell cycle process. 

Several methods have been developed to integrate multiple types of data, 
including mRNA expression, chip-chip, physical interaction and protein 
phosphorylation, to infer a transcription regulatory network in eQTL analysis [20-23]. 
In this paper, we exploited a novo strategy to construct a specific network through 
integrating genetic interaction network with other genomic data, and applied it to the 
cell cycle process in the budding yeast. Our study provides new insights into genes 
and interactions involved in the cell cycle process. 

2 Results 
2.1 Construct a potential cell cycle gene set 

Our strategy to integrate multiple types of data can be visualized by a flow-chart 
(Figure 1). In the first step, we want extend the known cell cycle gene set to include 
potential cell cycle gene sets. E-MAP method was adopted to identify genes which 
genetically interact with the known ones. We screened 35 known cell cycle genes 
(KCCGs) against a library of 1536 test strains in S. cerevisiae. Using the S-score 
cutoff S>2.5 or S<-3.5, 850 test genes with 1925 significant genetic interactions were 
selected. (See Methods and materials) 

However, we cannot claim these 850 test genes are involved in cell cycle process 
for two reasons: (1) the known cell cycle genes could also take part in other 
biological processes; (2)genetic interactions also exist between genes participating 
different pathways [24]To concentrate on cell cycle genes, a possible solution is to 
use co-expression, especially co-expression in time course microarrays, as a filtering 
criterion, since gene pairs co-expressed in time course expression across one or two 
period are more likely to be co-functional in the cell cycle process. 

Hence, we filtered the 1925 gene pairs derived from the previous step by the 
co-expression constrain. Using 8 groups of time-course expression data sets from 4 
publications, we defined the expression correlation of two genes (See Methods and 
materials). We have found that when a higher cutoff of co-expression level is applied, 
cell cycle related functions are more likely to be enriched in the remaining genes after 
filtering (Figure 2). When the cutoff is higher than 0.85, there is at least one cell cycle 
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related functional category enriched. Thus genes with correlation greater than 0.85 
are selected as the potential set of cell cycle genes (PCCGs). 178 test genes with 257 
significant interactions passed the two step filtering. 

 
 

 
Figure 1: Overview of our strategy to integrate multiple types of data to identify cell 
cycle gene and infer regulatory pathways. 

 
 

 
Figure 2: In order to demonstrate that co-expression is a filtering criterion for 
identifying cell cycle genes, we studied the enrichment of cell cycle genes at 
different level of co-expression. First, gene pairs with S score under certain cutoff 
are excluded from further analysis. Then, among the remaining gene pairs, we 
extracted the sub-sets in which genes are co-expressed at certain level. Varying the 
level of co-expression, gene set enrichment analysis were performed on all 
biological process terms in GO, and we investigated the rank of cell cycle related 
GO terms in the derived p-values (Fig 2). As the co-expression level increases, the 
minimum rank of the cell cycle related GO terms decreases. At correlation above 
0.85, the filtered sub-sets are enriched in at least one cell cycle related GO terms.  
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2.2 A cell cycle transcriptional network based on the PCCGs and 
KCCGs 

In the next step, we would search for main TFs which regulate both the PCCGs 
and the KCCGs, and then construct the transcriptional regulatory network. In 
previous studies, TF-DNA binding data (Chip-Chip data) is usually combined with 
expression information to construct the regulatory network. However, it is 
unnecessary for TF-target pairs to be co-expressed at a high level. Instead of setting 
constrains on the co-expression level, we required periodical expression for a TF to 
be included. Since genes involved in the cell cycle process are expressed periodically, 
it is reasonable to assume periodicity of their transcriptional regulators. In addition, 
we also assume that the regulatory targets of a TF involved in the cell cycle should be 
enriched for the known cell cycle gene. Hence, with known cell cycle genes 
combined from PCCGs and KCCGs, TFs which are enriched for cell cycle neighbors 
in transcription network were identified. 

The significance of periodicity and enrichment of cell cycle genes are calculated 
(Methods and materials). Both approaches tend to select TFs which are known to be 
involved in cell cycle regulation according to MIPS functional annotation (Figure 3).  

The two methods are consistent since most of the known cell cycle TFs rank top 
in both cases. In the meanwhile, some TFs are ranked differently (Table S1). For 
example, Mcm1 has the rank 5/130 in the enrichment test (ET), however it ranks 
124/130 in periodic test (PT) which means its expression does not show periodicity. 
As we know, Mcm1 regulates different phases during the cell cycle [1,2], and its 
expression will not be periodic. However, many of its neighbor genes in the 
transcriptional network are cell cycle genes, so that we could identify it in ET. 
Similar to Mcm1, Skn7 ranks 22 and 114 respectively in ET and PT. In contrast, 
Yox1 have the rank 4 in PT but rank 86 in ET. One possible explanation is that the 
PCCGs and KCCGs cover a limited part of cell cycle related genes and some targets 
of Yox1 are missing in this set. Other examples like Hcm1, Yhp1 have similar 
situations. 

Based on the analysis above, a TF that is significant in either test should be 
included. Hence, we use the multiplication of the two ranks as an index, and use its 
rank to evaluate the priority order (see Additional material for details). 

To determine how many TFs should be involved, we examined the coverage rates 
of TFs. The coverage rate is evaluated at two levels: the fraction of genes which are 
neighbors of the selected TFs (STs) in the PCCGs and KCCGs; the fraction of gene 
pairs which are co-regulated by any one of the STs . 176/202 genes in the PCCGs and 
KCCGs are involved in the chip-chip data set (at least one TF can bind to them), and 
100 gene pairs which are both genetically interacting and co-expressed can be 
simultaneously bound by the same TF. 

We noticed that when the top 25 TFs are selected, most of the 176 genes and 100 
gene pairs (85% and 94%) could be covered (Figure 4). The cover rate increases quite 
slowly when more TFs are selected. Thus we used these 25 TFs to construct the 
transcriptional network based on the PCCGs and KCCGs. 
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Figure 3: Comparison of the fraction of cell cycle TFs selected by different 
standards：enriched rank, periodic rank, and their combination (the rank of 
multiplication of the two ranks). All the three methods we adopted tend to select 
more cell cycle TFs than random (Fraction=37/183=0.2). The enriched test and 
periodic test show similar power, while the combination of them can increase the 
power. 

 
Figure 4: The percentage of single gene and gene pair coverage corresponding to 
the number of TFs selected. 

 

2.3 Recover of known genetic interactions with our E-MAP 
Akin to previous work[3], we first tested the sensitivity and precision of the 

E-MAP data (see Additional materials). When compared to genetic interactions in 
BIOGRID, both the positive and negative interactions are of good precision 
( ). However, the significance level of precision didn’t increase when 
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the co-expression test was applied (Table S2). It indicates that co-expression does not 
provide extra information on genetic interaction. This can also be proved when the 
distribution of S-score of all gene pairs and those of highly co-expressed pairs are 
compared (Figure S1). It means that genetic interaction and co-expression are 
conditionally independent, and they play different roles in our strategy. E-MAP 
provides the causal relationship, while co-expression ensures the genes are 
co-functional, here in our assay to be cell cycle related. Hence our strategy can find 
potential cell cycle genes and their relationships with other cell cycle genes, and we 
can construct a reliable network. 

We also compared our S-score with previously published SGA data [3]. 
Significantly interacting gene pairs show obvious correlation between the two data 
sets (r=0.64, Figure S2). All these validated the accuracy of our measurements. 

2.4 Enrichment for CDC28 substrates 
Since cell-cycle events are controlled by cyclin-dependent kinases (CDKs), we 

checked if the Cdk1(CDC28) substrates are enriched in our PCCGs and STs. As 
expected, both the PCCGs and STs are enriched with CDC28 substrates 
( , Table S4). This also supports that the PCCGs and 
STs are both cell cycle related with high confidence. 

2.5 Indirect evidence supports the STs form a cooperative 
transcriptional network 

From wild type vs. TF mutant microarrays data, we could get the indirect 
information of transcriptional regulation. Since this is independant evidence which 
describes transcriptional network, it is utilized to validate the network we 
constructed. 

In ChIP-chip data, we found that a great part of TFs (170/183) could regulate each 
other within 10 steps. It means that any TF can be indirectly connected to the targets 
of the other TFs. Between our 25 TFs and the 176 target genes, there are 108 indirect 
TF-target pairs. By using all 183 TFs’ transcriptional relations in the ChIP-chip data 
set, all these pairs can be connected within three steps (Figure 5). 

Indirect evidence indicates connections in the transcriptional network, and we 
hyperthese the 25 TFs can form a sub-network that is able to explain their indirect 
connections with the 176 targets. If so, it will be a strong support for the authenticity 
of this sub-network. 

We test the fraction of indirect TF-TG pairs which can be connected by using 
only the 25 TFs’ transcriptional relationships. The result (Figure 5) shows that the 
sub-network can explain at most 94.4% (102/108) of the indirect relations, and it 
strongly support the conclusion above. 

2.6 Clustering of the constructed transcriptional network 
As mentioned above, genetic interactions may be missed in E-MAP analysis, 

which leads to the result that clustering of S-score profile cannot always show 
reasonable results. Hence, we adopted the transcriptional profile to do cluster 
analysis to understand the structure of the PCCGs and KCCGs (Figure S3). 
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Figure 5: This figure shows all indirect interactions between the 25 TFs and their 
targets can be connected within 3 steps by using all TFs. If just using the 25 TFs, 
94.4% (102/108) of these interactions can be connected. It illustrates that the 25 TFs 
can form a well connected sub-network. 

 

 
Figure 6: An example of sub-clusters in the transcriptional network. Red box means 
the corresponding TF/gene (Top) regulates or is regulated by the target gene/TF 
(right), and black box means there is no transcriptional connections between them. 
In this cluster, target set is enriched with known cell cycle genes (with * 
annotation).  

 
The clustering result of the TFs are consistent with prior knowledge, and several 

cooperating TF clusters, such as Ace2/Swi5, Fkh1/Fkh2, Swi4/Swi6/MBP1, and 
Yhp1/Yox1 are recognized. This indicates TFs with similar function share neighbors 
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in the network. 
In addition, some target clusters are significantly enriched with known cell cycle 

genes (Figure 6). These provide meaningful information to infer the function of 
genes. 

2.7 Potential cell cycle related genes 
Results of the analysis above are summarized in Table S6. Three genes with 

unknown function are identified as potential cell cycle genes. 
The first one is YPL158C, which genetically interacts with PCL9, AMN1 and 

BUD4. All these four genes are regulated by known TFs in M phase (including G2/M 
and M/G1) (Figure 7A). The expression data shows that YPL158C, PCL9 and AMN1 
are simultaneously expressed and their peak value of expression is later then ACE2 
and SWI5 which are transcriptional regulators of them, and also BUD4 (Figure 7B). 
This is consistent with the regulatory network, because BUD4, ACE2, and SWI5 are 
mainly regulated by FKH1/2 and MCM1, while YPL158C is mainly regulated by 
ACE2 and SWI5. Table S7 lists the description of the functions of these genes in 
SGD. All of them are acting in M phase or early G1 phase. Based on these 
observations, YPL158C is possibly involved in M phase and co-operate with PCL9, 
AMN1 and BUD4. 

The second is YPR174C, which is genetically interacts with CLN3 and potential 
substrates of CDC28. YPR174C and CLN3 are co-regulated by MBP1 and XBP1, 
another known cell cycle TF, which has not been selected in the procedure above 
because of low periodic rank (rank in PT: 120, rank in ET: 11, Final rank: 34). 
According to the description in SGA, XBP1 is a member of SWI4/MBP1 family. 
Since MBP1 and XBP1 do not have significant periodic expression, we compared the 
expression of SWI4 with CLN3 and YPR174C. We found SWI4 and YPR174C are 
significantly co-expressed, and CLN3 and YPR174C also showed a co-expression 
pattern, but with two time points lagged (Figure 7A, 7C). Now it’s convincing to 
consider YPR174C to be involved in G1 phase in cell cycle process since all other 
related genes are mainly acting in this phase. 

The last one we will introduce is YJR054W, which is genetically interacts with 
BUD4 and potential substrates of CDC28. As showed in figure 6A, BUD4 is 
regulated by MCM1. YJR054W is regulated by SWI4/SWI6 which are also regulated 
by MCM1. In the expression data (Figure 7A, 7D) we found that the expressions of 
SWI4 and BUD4 are highly negatively correlated. This can be explained by that 
MCM1 participates in the formation of both repressor and activator complexes, and 
SWI4 and BUD4 may be regulated by different complexes. The expression of 
YJR054W is similar to SWI4 and slightly lagged, which supports the regulation 
between them. Since BUD4 can influence the next round of budding and SWI4/6 
mainly regulate the G1 phase, YJR054W may be involved in M/G1 phase and 
co-operate with BUD4. 

3 Discussion 
We developed a novel approach to discover genes participating in the cell cycle 

process in S. cerevisiae. Through integration of multiple sources of genomic data, we  
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Figure 7A          Figure 7D  

   
 

Figure 7B          Figure 7C 

 
Figure 7 Analysis of potential cell cycle related genes. (A) The sub-network we 
constructed which contains three genes with unknown function. (B, C) The 
expression of YPL158C related genes in Cho-cdc28 experiment. The genes can be 
separated into two groups. The first includes YPL158C, PCL9 and AMN1 (upper), 
and the rest forms the other (below). Genes in each group are co-expressed, and the 
peak value of the first group is lagged comparing to the second one. (C) The 
expression of YJR054W, SWI4 and BUD4 in Spellman-alpha experiment. SWI4 
and BUD4 are significantly negatively correlated (upper), and YJR054W looks 
similar to SWI4 but is appropriately one time point lagged. (D) The expression of 
YPR174C, CLN3 and SWI4 in Spellman-alpha experiment. It’s obvious that 
YPR174C is co-expressed with SWI4. When YPR174C is left shifted for 2 time 
points (Noted as YPR174C-2), it’s also co-expressed with CLN3. 
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reconstructed a sub-network from known cell cycle genes and predicted genes in the 
sub-network as potential cell cycle genes. Furthermore, in order to find how these 
genes are regulated, a transcriptional network was constructed based on ChIP-chip 
experiments. A transcription factor is considered to regulate the cell cycle process, if 
it is periodically expressed or its neighbors in the transcriptional network are 
enriched with cell cycle genes. Three genes with unknown function are identified as 
novel cell cycle genes. 

Our approach integrates the genetic interaction network, co-expression network, 
and transcriptional network, and performed well in predicting cell cycle genes. 
However, there are other types of networks, such as protein physical interaction 
networks, which are informative for the prediction of gene function. We believe the 
efficiency of prediction can be increased when such data are integrated in a 
reasonable framework.  

Although the current study focused on the cell cycle process, our approach is not 
limited and can be easily applied to other biological processes with data available. 

4 Methods and materials 
4.1 E-MAP experiment and data analysis 

The S-score in E-MAP was derived as previously described [8]. We used 35 cell 
cycle query genes (Table S5) against a library of 1536 test genes. The query genes are 
selected because they play important roles in different phases in the cell cycle process. 
However, the analyzing framework we developed is not affected by the selection of 
the queries genes, and it can be applied to other processes as well. Finally 1387 test 
genes remained in our analysis, and there were 48545 S-scores with 613 missing 
values. To define the strong genetic interactions, we introduced a cutoff of S<-3.5 for 
negative interactions and S>2.5 for positive interactions. This will select 636 positive 
and 1278 negative interacting gene pairs. We adopted this cutoff to highlight the top 
5% significant interactions. 

4.2 Time course expression data and definition of correlation 
We use eight time course microarray experiments from four previously published 

work to do the co-expression analysis [4,5,6,7]. The data is downloaded from the 
supplementary or the authors’ website. 

To measure the similarity between the time course expression profile of two 
genes, we used the time-lagged correlation [9]. For multiple experiments, we adopt a 
loose definition for correlation between two genes - the maximum time lag 
correlation score in all the eight experiments. It means if two genes show high 
correlation in one experiment, they are considered as co-expressed. The reason we 
use this loose is that as we have already had a stringent constrain in E-MAP analysis, 
the interactions are reliable even if two genes only show co-expression in one 
experiment. 

4.3 Transcriptional Regulation and CDC28 substrate data sets 
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The Chip-Chip data and indirect wild type vs. TF mutant microarrays data are 
downloaded from YeastRact (http://www.yeastract.com, [11, 12]). Among 183 TFs 
in our data set, 37 are annotated as cell cycle related. Since only 130/183 TFs have at 
least one target in the PCCGs and KCCGs, we just did the relative analysis to these 
ones.  

The CDC28 substrate data set was downloaded from the supplementary of 
previous published work which identified around 200 substrates [15].  

4.4 Enrichment for cell cycle genes and TFs 
In order to check whether the PCCGs are enriched with known cell cycle genes, 

we calculated the proportion of genes which are annotated to participate in the cell 
cycle process (in MIPs) in the PCCGs, and use the cumulative hypergeometric 
distribution to define the p-values. About 1/3 of the PCCGs (57/178) are known cell 
cycle genes ( , Table S3). We performed the same test to the STs. 18 of 
them are known to be cell cycle TFs ( , Table S3). 

4.5 Definition of p-values for periodicity and enriched for cell cycle 
genes 

The significance of periodicity is defined as previously published work [13,14]. 
The data is downloaded from their website http://www.cyclebase.org. The definition 
of p-value for enrichment is similar to the GO enrichment test. For , the p-value 
is defined as 

 

Here,  is the neighbors in the PCCGs and KCCGs;  is the number of genes 
in PCCGs and KCCGs;  is ’s neighbors (TFs or targets) in the test genes and 

 is the number of test genes. 
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