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Abstract Analysis of functions and interactions of proteins and domains is important for under-
standing cellular systems and biological networks. Many methods for predicting protein-protein
interactions have been developed. It is known that mutual information between residues at interact-
ing sites can be higher than that at non-interacting sites. It is based on the thought that amino acid
residues at interacting sites have coevolved with those at the corresponding residues in the partner
proteins. Several studies have shown that such mutual information is useful for identifying contact
residues in interacting proteins. Therefore, we focus on the mutual information, and propose a novel
method using conditional random fields combined with mutual information between residues. In
the method, protein-protein interactions are modeled using domain-domain interactions. We per-
form computational experiments, and calculate AUC (Area Under the Curve) score. The results
suggest that our proposed model with mutual information is useful.

Keywords Conditional Random Field; Mutual Information; Protein Domain; Protein-Protein In-
teraction

1 Introduction
Understanding of protein functions and protein-protein interactions is one of impor-

tant topics in fields of molecular biology and bioinformatics. Recently, many researchers
have focused on coevolution of amino acid residues of proteins to investigate interactions
and contacts between residues [18, 2, 9, 17]. If residues at important sites for interac-
tions between proteins are substituted in one protein, corresponding residues in interact-
ing partner proteins are expected to be also substituted by selection pressure. Otherwise,
such mutated proteins may lose the interactions. Fraser et al. confirmed that interacting
proteins evolve at similar evolutionary rates by comparing putatively orthologous protein
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sequences between S. cerevisiae and C. elegans [8]. It means that substitutions for contact
residues occur in both interacting proteins as long as the proteins keep interacting with
each other. Therefore, mutual information (MI) between residues is useful for predict-
ing protein-protein interactions for proteins of unknown function. MI is calculated from
multiple sequence alignments for homologous protein sequences. Weigt et al. identified
direct residue contacts between sensor kinase and response regulator proteins by message
passing, which is an improvement of MI [17]. Burger and van Nimwegen used a depen-
dence tree where a node corresponds to a position of amino acid sequences, and predicted
interactions using a Bayesian network method [2].

On the other hand, Markov random field and conditional random field models have
been well studied in fields of natural language processing [14, 15]. Also in bioinfor-
matics, protein function prediction methods from protein-protein interaction network and
other biological networks were developed using Markov random fields [6, 4]. On the
other hand, several prediction methods have been developed based on domain-domain
interactions. Deng et al. proposed a domain-based probabilistic model of protein-protein
interactions, and developed EM (Expectation Maximization) method [5]. Based on this
probabilistic model, LP (Linear Programming)-based methods were developed [10], and
Chen et al. improved the accuracy of interaction strength prediction [3]. In this paper,
we propose a prediction method based on domain-domain interactions and the mutual
information using conditional random fields.

2 Mutual Information Between Domains
In order to investigate the relationship between two positions of proteins, MI for dis-

tributions of amino acids at the positions is used. Such distributions can be obtained
from multiple alignments of protein sequences and domain sequences. In this section, we
briefly review MI for distributions of amino acids, and explain MI between domains.

We assume that multiple sequence alignments for domains Dm and Dn are obtained,
respectively (see Figure 1). Let A be a set of amino acids, fi(A) be the appearance fre-
quency of amino acid A at position i in domains Dm and Dn, and fi j(A,B) be the joint
appearance frequency of a pair of amino acid A at position i in Dm and B at position j in
Dn, where each frequency is divided by the number of sequence pairs of multiple align-
ments, M such that ∑A∈A fi(A) = ∑A,B∈A fi j(A,B) = 1. However, we cannot see which
sequence in the multiple alignment of domain Dm corresponds to a specified sequence in
that of Dn. Therefore, we assume that sequences contained in the same organism can be
paired. In the example of Figure 1, the second sequence of Dm is paired with the first
one of Dn, the third one of Dm is paired with the second one of Dn, and so on. The first
sequence of Dm is not counted into the appearance frequencies because it is not paired
with any sequence of Dn although it may be paired with sequences of other domains than
Dn.

Multiple alignments often include some gaps. Weigt et al. counted the frequencies of
gaps as well as amino acids [17]. Therefore, we also consider gaps to be a kind of amino
acids, that is, the number of distinct amino acids is |A | = 21. Then, mutual information
for position i in Dm and j in Dn is defined as the Kullback-Leibler divergence between the
multiplication of appearance frequencies, fi(A) f j(B), and the joint appearance frequen-
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Figure 1: Illustration on the calculation of mutual information from multiple alignments
of domains. Domains Dm and Dn have multiple alignments of sequences from several
organisms, respectively. Mutual information is calculated for each pair of positions i and
j.

cies, fi j(A,B), as follows.

MIi j = ∑
A,B∈A

fi j(A,B) log
fi j(A,B)

fi(A) f j(B)
. (1)

If frequency distributions of amino acids at positions i and j are independent from each
other, fi j(A,B)≈ fi(A) f j(B), and MIi j approaches to zero. This means that the two posi-
tions are not related with each other in the evolutionary process. If domains Dm and Dn
interact at the positions, it is considered that MIi j becomes high because the positions have
coevolved through the evolutionary process in order to keep the interaction. It should be
noted that two positions i and j do not always directly interact even if MIi j is high [17].
However, such proteins having high values of MI have a possibility to directly interact
with each other at other positions in the proteins.

However, we need to reduce MIi j because it can be unnecessarily high depending on
distributions of fi(A) and f j(B). For that purpose, we make use of MI(random)

i j , which is
the mutual information MIi j from the joint frequency, fi j(A,B), obtained by shuffling at
random the combinations of sequences in multiple alignments. In this paper, we repeat
the procedure 100 times, and take the average.

For practical uses of MI, fi(A), f j(B) and fi j(A,B) should be positive values. Oth-
erwise, we cannot calculate MIi j by using computers. Therefore, we use the following
pseudocount as in [17],

f (pseudo)
i (A) =

η + fi(A)M
|A |η +M

(2)

f (pseudo)
i j (A,B) =

η/|A |+ fi j(A,B)M
|A |η +M

, (3)

where η is a constant value, in this paper we use η = 1. It should be noted that the sum
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Figure 2: Markov random field model for protein-protein interactions. Left: Example
of proteins Pi and Pj. Pi consists of domains D1 and D2, and Pj consists of domain D3,
respectively. Right: Factor graph G(U,V,E). A vertex corresponds to Pi j ∈U or Dmn ∈V ,
and there exists an edge between Pi j and Dmn if and only if Dmn ∈ Pi j.

over all amino acids A , ∑A∈A f (pseudo)
i (A) = 1 and ∑A,B∈A f (pseudo)

i j (A,B) = 1 because
∑A∈A fi(A) = ∑A,B∈A fi j(A,B) = 1.

In order to investigate interactions between proteins, we need MI between domains
included in the proteins. Thus, we define MI between domains Dm and Dn, mmn, to be the
maximum of MI over all positions i and j as follows.

mmn = max
i, j

(MIi j−
〈

MI(random)
i j

〉
), (4)

where 〈v〉 means the average of v, i and j are positions of Dm and Dn, respectively.

3 Conditional Random Field Model for PPI
In this section, we propose a probabilistic model for protein-protein and domain-

domain interactions using conditional random fields [14, 15] because it can be considered
that two domains Dm and Dn do not always interact even if mmn is large. For example,
Weight et al. improved MI and proposed direct information (DI) because residues do not
always contact with each other even if the MI is large [17].

Most proteins contain domains as is well known. If two proteins do not interact with
each other, any two domains contained in the proteins must not interact with each other.
In the left example of Figure 2, protein Pi consists of domains D1 and D2, and protein
Pj consists of domain D3, respectively. If Pi and Pj do not interact, any pair of (D1, D3)
and (D2, D3) does not interact. Deng et al. proposed a probabilistic model for a pair of
proteins as follows [5] by assuming that proteins Pi and Pj interact if and only if at least
a pair of domains included in the proteins interacts, and events that domains interact are
independent from each other:

Pr(Pi j = 1) = 1− ∏
Dmn∈Pi j

(1−Pr(Dmn = 1)), (5)

where Pi j = 1 means that proteins Pi and Pj interact, Dmn = 1 means that domains Dm
and Dn interact, and Dmn ∈ Pi j means that domain Dm is included in protein Pi and Dn is
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included in Pj, the product in the right hand side is calculated for all domain pair (Dm,
Dn) included in the protein pair (Pi, Pj).

By transforming Eq. 5, we have

1−Pr(Pi j = 1) = ∏
Dmn∈Pi j

(1−Pr(Dmn = 1)) (6)

= exp

(
∑

Dmn∈Pi j

λ (mn)

)
, (7)

where λ (mn) = log(1−Pr(Dmn = 1)).
From this equation, we can consider the following Markov random field model for

protein pair (Pi, Pj) (see Figure 2).

Pr(Pi j = pi j,ddd) =
1

Zi j
exp

(
∑

Dmn∈Pi j

∑
t,u∈{0,1}

λ (i j,mn)
t,u f (i j,mn)

t,u (pi j,dmn)

)
, (8)

where pi j ∈ {0,1}, ddd means a set of events on domain-domain interactions, Dmn =

dmn (dmn ∈ {0,1}), f (i j,mn)
t,u (pi j,dmn) denotes a local feature, λ (i j,mn)

t,u is the correspond-
ing weight parameter, and Zi j denotes the normalization constant. For instance, Eq. 8 for
pi j = 0 is equivalent to Eq. 7 in the case that f (i j,mn)

t,u (pi j,dmn) = 1 if t = pi j and dmn = 0,
otherwise 0.

In Markov random fields, random variables have Markov properties represented as
an undirected graph [11]. The factor graph for our model is represented to be a bipartite
graph G(U,V,E) with a set of vertices U corresponding to protein-protein interactions Pi j,
a set of vertices V corresponding to domain-domain interactions Dmn, and a set of edges
E between a vertex in U and one in V as the right figure of Figure 2. There exists an edge
between Pi j ∈U and Dmn ∈ V if and only if Dmn ∈ Pi j. For the left example of Figure
2, protein pair (Pi, Pj) includes domain pairs (D1, D3) and (D2, D3). Then, in the factor
graph, the vertex of Pi j is connected with vertices of D13 and D23, respectively. Although
the vertex of Pi j does not have other adjacent vertices than the vertices of D13 and D23,
those of D13 and D23 can be connected with other vertices than that of Pi j.

In order to simplify the model, we substitute λ (i j,mn)
t,u = λ (mn)

t,u and f (i j,mn)
t,u = f (mn)

t,u for
all protein pairs Pi j. Then, we have the following joint probability,

Pr(ppp,ddd) =
1
Z

exp

(
∑
Pi j

∑
Dmn∈Pi j

∑
t,u∈{0,1}

λ (mn)
t,u f (mn)

t,u (pi j,dmn)

)
, (9)

where ppp means a set of events on protein-protein interactions, Pi j = pi j.
We here introduce mutual information between domains as given conditional data in

order to combine it with the probabilistic model. Then, Eq. 8 can be written as

Pr(pi j|mmm) =
1

Zi j(mmm)
exp

(
∑

Dmn∈Pi j

∑
t∈{0,1}

λ (mn)
t f (mn)

t (pi j,mmn)

)
, (10)
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where

Zi j(mmm) = ∑
pi j∈{0,1}

exp

(
∑

Dmn∈Pi j

∑
t∈{0,1}

λ (mn)
t f (mn)

t (pi j,mmn)

)
, (11)

f (mn)
t (pi j,mmn) =





mmn (if pi j = 1 and t = 1)
1/mmn (if pi j = 0 and t = 0)

0 (if pi j = 1 and t = 0)
−1 (if pi j = 0 and t = 1)

. (12)

It should be noted that a negative value, −1, is given to f (mn)
t because it is undesired

that a pair of domains interact although proteins having the pair do not interact. In this
way, the local feature f (mn)

t correlates protein-protein interactions Pi j with domain-domain
interactions Dmn (see Figure 2).

3.1 Parameter Estimation
In this section, we discuss how to estimate the parameters λλλ = {λ (mn)

t }. We assume
that protein-protein interaction data ppp = {pi j} are given. Then, the likelihood function is
represented by

P(ppp|mmm) = ∏
Pi j

P(pi j|mmm) =
1

Z(mmm)
exp

(
∑
Pi j

∑
Dmn∈Pi j

∑
t∈{0,1}

λ (mn)
t f (mn)

t (pi j,mmn)

)
, (13)

where Z(mmm) = ∏Pi j Zi j(mmm). By taking the logarithm, we have

l(λλλ ) = logP(ppp|mmm) = ∑
Pi j

(
∑

Dmn∈Pi j

∑
t∈{0,1}

λ (mn)
t f (mn)

t (pi j,mmn)− logZi j(mmm)

)
. (14)

We estimate the parameters by maximizing the log-likelihood function, l(λλλ ). Since
log(ex + ey) is a convex function for variables x and y, that is, l(λλλ ) is a concave function,
we are able to obtain a global maximum. For maximizing such functions, various meth-
ods such as the steepest descent method, Newton’s method, and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [1] method have been developed. Newton’s method calculates
the inverse of the Hessian matrix for the objective function. However, the computational
cost is high. Therefore, the quasi-Newton method approximates the matrix by some ef-
ficient method using the first derivatives, the gradient. In this paper, we use the BFGS
method, which is one of the quasi-Newton methods.

By differentiating Eq. 14 partially with respect to each parameter λ (mn)
t , we have

∂ l(λλλ )

∂λ (mn)
t

= ∑
Pi j :Dmn∈Pi j


 f (mn)

t (pi j,mmn)− ∑
pi j∈{0,1}

P(pi j|mmm) f (mn)
t (pi j,mmn)


 . (15)
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Table 1: Result on AUC for training and test datasets using CRF model with MI and that
without MI.

iteration with MI without MI
training test training test

1st 0.999384 0.731399 0.999439 0.742315
2nd 0.999584 0.727377 0.999511 0.731686
3rd 0.998895 0.706693 0.998823 0.703821
4th 0.999511 0.672795 0.999638 0.665613
5th 0.999497 0.763377 0.999533 0.736623

average 0.999374 0.720328 0.999389 0.716012

4 Computational Experiments
4.1 Data and Implementation

We used human protein-protein interaction data from the DIP database [13], the file
name is ’dip20091230.txt’. We used the UniProt Knowledgebase database (version 15.4)
[16] as protein domain inclusion data. We deleted proteins that do not have any domain,
and obtained 294 interacting protein pairs as positive data that include 300 distinct pro-
teins and 320 domains. We used the Pfam database (version 24.0) [7] to obtain multiple
sequence alignments for domains, and calculated MI, mmn, for each pair of domains. We
selected 294 non-interacting protein pairs uniformly at random as negative data such that
negative data do not overlap the positive data.

We used libLBFGS (version 1.9) with default parameters to estimate the parameters
λ (mn)

t , which is a C implementation of the limited memory BFGS method [12], and is
available on the web page, http://www.chokkan.org/software/liblbfgs/.

4.2 Result
In order to evaluate our method, we compared two models, the proposed CRF model

with MI, and that without MI (i.e., mmn = 1 is given for each Dmn). We performed five-
fold cross-validation, that is, split the data into 5 datasets (4 for training and 1 for test),
estimated λ (mn)

t from the training datasets, and calculated Pr(Pi j = 1|mmm) of Eq. 10 for
each protein pair in the test dataset and AUC (Area Under the Curve) score. We repeated
5 times, and took the average. Table 1 shows the results on AUC for training and test
datasets using the CRF model with MI and that without MI. We can see from this ta-
ble that the results using the model with MI are better than those without MI. Figure 3
shows the average ROC (Receiver Operating Characteristic) curves for training and test
datasets using CRF model with MI and that without MI. For training datasets, the results
using both CRF models were almost perfect. For test datasets, CRF model with MI out-
performed that without MI in low false positive rates. Since getting higher true positive
rates in low false positive rate regions is practically important, CRF model with MI is
considered to be better than that without MI.
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Figure 3: Average ROC curves for training and test datasets using CRF model with MI
and that without MI.

5 Conclusion
We proposed a novel method which combines conditional random fields with the do-

main based model of protein-protein interactions. Furthermore, we improved the method
by introducing mutual information. In the improved CRF model, mutual information be-
tween domains is given as conditions, where MI between domains is defined as the max-
imum of MIs between residues in the domains. It is considered that amino acid residues
at important sites for interactions have coevolved with each other, and MI has been used
for identifying contact residues in interactions.

We performed five-fold cross-validation experiments, and calculated AUC for prob-
abilities that two proteins interact. The results suggested that our proposed model with
mutual information is useful. However, the results of AUC for training datasets implied
that estimated parameters were overfitting to training datasets. For avoiding that prob-
lem, we can improve the model, for instance, by adding regularization terms, l1-norm
of parameters to the log-likelihood function. Since CRF has an advantage to be able to
incorporate large number of features, it remains as a future work to modify the model
itself to obtain better accuracy for instance, modifying the local feature and adding new
features. Comparison of our method with other existing methods and evaluation of our
method by using more datasets are left as other future work.
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