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Abstract Boolean Network (BN) and its extension Probabilistic Boolean network (PBN) have
received much attention in modeling genetic regulatory networks. In this paper, we consider the
problem of constructing a PBN from a given positive stationary distribution. The problem can be
divided into two subproblems: Construction of a PBN from a given sparse transition probability
matrix and construction of a sparse transition matrix from a given stationary distribution. These are
inverse problems of huge sizes and we proposed mathematical models based on entropy theory. To
obtain a sparse solution, we consider a new objective function having an addition term of Lα -norm.
Newton’s method in conjunction with CG method is then applied to solve the inverse problem.
Numerical examples are given to demonstrate the effectiveness of our proposed method.

Keywords Genetic Regulatory Networks, Sparse Probabilistic Boolean Networks; Inverse Prob-
lem; Lα -morm.

1 Introduction
The study of mathematical models and efficient numerical algorithms for the reg-

ulatory interactions among DNA, RNA, proteins and small molecules is an important
research topic in genomic research [9]. In fact, a lot of formalisms have been proposed
to study genetic regulatory networks such as Bayesian networks [13], Boolean Networks
(BNs) [11], multivariate Markov chain model [3], Probabilistic Boolean Networks (PBNs)
[16, 17]. A Reviews on mathematical models can also be found in [8]. Among these mod-
els, BN and its extension PBN have received more and more attention as they are able to
capture the switching behavior of biological processes [9]. BN model was first introduced
by Kauffman [11, 12]. Interested readers can find reviews of BN models in [9]. In a BN
model, each gene is regarded as a vertex in the network and the gene expression states
are quantized to only two levels: on and off (represented as 1 and 0). The target gene is
predicted by several genes called its input genes via a Boolean function. We say a BN is
defined if the input genes and the Boolean functions are given. We remark that a BN is
actually a deterministic model and the only randomness comes from its initial state. Con-
sidering the inherent deterministic directionality in BNs as well as only a finite number of
possible states, it is directly to see that some states will be re-visited infinitely, depending
on the initial starting state. Such states are called attractors and the states lead to them
comprise their basins of attraction. The number of transitions needed to return to a given
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state in an attractor is called the cycle length [11]. It is also well known that eventually
a BN will enter into an attractor cycle and stay there forever. In fact, the cycles can have
biological significance [10] such as states of cell proliferation or cell apoptosis. For more
details we refer interested readers to [12].

Since genetic regulation process exhibits uncertainty and microarray data sets used to
infer the model have errors due to experimental noise in the complex measurement pro-
cesses, it is more realistic to consider a stochastic model, Probabilistic Boolean Network
(PBN). The idea of extending the concept of a BN (a deterministic model) to a PBN is as
follows. For each gene, there can be more than one Boolean function (a set of Boolean
functions with selection probabilities assigned to them). The dynamics (transitions) of a
PBN can be described using Markov chain theory [4, 16, 17]. Given a PBN, assuming
that the underlying Markov chain is irreducible, the long-run behavior is characterized by
its stationary distribution which gives the first-order statistical information of a PBN. One
can understand a genetic network and also study the influence of different genes via such
a network.

Here we address the problem of constructing a PBN from a given stationary proba-
bility distribution. This problem is very important to network inference from steady-state
data, as most microarray data sets are assumed to be obtained from sampling the steady-
state. For the case of BN, Pal, et al. [14] have proposed two algorithms to solve the inverse
problem of finding attractors constituting a BN. For the case of PBN, some preliminary
works have been done base on entropy theory [7, 18]. Motivated by the results in [7, 18],
we tackle the inverse problem by splitting into two different inverse problems. One of
the problem (Problem 1) is to construct a PBN (the BNs and the selection probabilities)
from a given sparse transition probability matrix. Newton’s methods in conjunction with
CG method has been proposed in [2] to solve the problem. Another problem (Problem
2) is to construct a sparse transition probability matrix from a given positive stationary
distribution. An entropy rate approach has been proposed for this purpose [6]. To get
more sparse solution in both problems, here consider adding a term in Lα -norm [1] to the
objective function.

The remainder of the paper is structured as follows. Section 2 gives a mathematical
formation of the inverse problems. Section 3 gives some numerical examples to demon-
strate our proposed methods. Finally, concluding remarks are given in section 4 to address
further research issues.

2 The Inverse Problems
In this section, we discuss the mathematical formulation of Problems 1 & 2. We first

begin with Problem 1, i.e. to construct a PBN from a given sparse transition probability
matrix with a set of BNs. We then proceed with Problem 2, to construct a spares transition
probability matrix from a given positive stationary distribution.

2.1 A New Mathematical Formulation for Problem 1
Given a transition probability matrix A and a set of Boolean networks {Ai} (biological

rules), we are to construct a PBN. Since the problem size is huge and A is usually very
sparse, here we assume that each column of A has m non-zero entries. In this case, we
have N = m2n

and we can order A1,A2, · · · ,Am2n systematically. We note that qi and Ai are
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non-negative and there are only m ·2n non-zero entries in A. Thus we have m ·2n equations
for m2n

unknowns. In other words, we are interested in the estimation of the parameters
qi, i = 1,2, . . . ,m2n

when A is given.
Then, one possible way to get qi is to consider the following minimization problem

([2]):

min
q

∥∥∥∥∥∥
A−

m2n

∑
i=1

qiAi

∥∥∥∥∥∥

2

F

(1)

subject to

0≤ qi ≤ 1 and
m2n

∑
i=1

qi = 1.

Here qi is the selection probability (importance) of the ith BN and ‖ · ‖F is the Frobenius
norm of a matrix. For the given matrix A = (ai j)l×l , we can re-order the entries of A by
defining a mapping function F from the set of l× l square matrices to the set of l2× 1
vectors as follows:

F







a11 · · · a1l
...

...
...

al1 · · · all





= (a11, . . . ,al1,a12, . . . ,al2, . . . , . . . ,a1l , . . .all)

T . (2)

If we let
U = [F(A1),F(A2), . . . ,F(Am2n )] and p = F(A) (3)

then (1) becomes
min

q
‖Uq−p‖2

2 (4)

subject to

0≤ qi ≤ 1 and
m2n

∑
i=1

qi = 1.

In practice, we note that the matrix U is usually very large, it is not possible to store
the whole matrix and therefore we need to seek for iterative methods for solving the
above minimization problem. One possible and reasonable approach is to consider the
solution which has the largest entropy rate as q itself can be considered as a probability
distribution. This means we would like to find q such that it maximizes

−
m2n

∑
i=1

qi log(qi). (5)

Entropy can be considered as a measurement of the uncertainty associated with a random
variable [15]. It measures, in the sense of an expected value, the information contained in
a message. Entropy method can also be regarded as a measure of the multiplicity associ-
ated with the state of the objects. Suppose we are given a state which can be accomplished
in much more ways. Then it is more preferable than one which can be accomplished in
only a few ways.
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2.1.1 A Modified Entropy Approach
In [1], the authors present a algorithm for reconstructing a sparse solution x=(x1, . . . ,xn)

from a small number of constraints by solving a linear system. They demonstrated that,
by adding 1-norm of x, i.e. ∑n

i=1 |xi|, to the objective function, it is more likely to get a
sparse solution. Motivated by this idea, we would like to modify the objective function in
5 However, in our problem, we have the constraint that

m2n

∑
i=1

qi = 1 i = 1, . . . ,m2n

and this means ∑m2n

i=1 |qi| = 1 and the L1-norm actually has no effect. Hence, we need to
modify the norm by the following

β
m2n

∑
i=1

qα
i (6)

where α and β are two parameters. We adopt both the variance (the larger the better) and
entropy (the smaller the better) of q as two possible measurements of solutions (they give
consistent results in our numerical experiment). In practice, we try different values of α
and β to obtain the best result. We employ grid search approach for finding the optimal
values of α and β with grid size of 0.01. Here α ranges from 0.01 to 0.99 and β ranges
from 0.1 to 2.0.

By adding the extra term of the form (6), one can get a modified entropy approach as
follows:

max
q



−

m2n

∑
i=1

qi logqi−β
m2n

∑
i=1

qα
i



 (7)

where 0<α < 1 and β ≥ 0. The first term is the entropy rate term as in (5) and the second
term is the Lα -norm part which helps in getting a sparse solution q. The new optimization
problem can be formulated as follows:

max
q



−

m2n

∑
i=1

qi logqi−β
m2n

∑
i=1

qα
i



 subject to Ūq= p̄ and 0≤ qi i= 1,2, . . . ,m2n

.

(8)
We then follow similar analysis in [2] and apply the Lagrange multiplier method to the
optimization problem (8). To build the Lagrange function, we only involve the considera-
tion of the constraint Ūq = p̄. The constraint qi ≥ 0 is checked in the whole process. Let
y is the multiplier and L(., .) is the Lagrangian function, then we have

L(q,y) = max
q



−

m2n

∑
i=1

qi logqi−β
m2n

∑
i=1

qα
i +yT (p̄−Ūq)



 (9)

The optimization problem can then be solved by using Newton’s method in conjunction
with CG method [6].
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2.2 A New Mathematical Formulation for Problem 2
For Problem 2, given a positive stationary distribution π of a finite Markov chain, say

N states, we are construct a transition probability matrix P corresponding to it, i.e.,

Pπ = π and (1,1, . . . ,1)P = (1,1, . . . ,1). (10)

It is clear that there can be infinite many possible solution for the captured problem. In
[6], it was proposed to apply the generalized entropy rate as a measure of uncertainty
(randomness) of the objective function:

N

∑
j=1

w j

(
−

N

∑
i=1

Pi j logPi j

)
(11)

where

0≤ w j ≤ 1 and
N

∑
i=1

wi = 1.

The parameter w j represents the weighting (importance) of State j. We note that−∑N
i=1 Pi j logPi j

is the entropy of the conditional probability distribution when the chain is in State j.
The authors in [6] proposed to use the generalized entropy rate with a penalty term as

the objective function:

N

∑
j=1

w j

(
−

N

∑
i=1

Pi j logPi j

)
+

N

∑
j=1

θ j

(
N

∑
i=1

(Pi j−
1
N
)2

)
(12)

subject to (10). The following parameters are pre-determined:

0≤ w j ≤ 1,
N

∑
i=1

wi = 1, and 0≤ θ j ≤ 1,
N

∑
i=1

θi = 1.

We note that the first term is the entropy rate and the second term is a penalty cost. The
penalty cost measures the deviation of conditional distribution at State j from the uniform
distribution. The parameters wi and θi are the weightings. We note that the first term is
concave and the second term is convex. Therefore they introduce some extra conditions
on θi and wi so that the above maximization problem have a unique solution.

2.2.1 A Modified Entropy Rate Approach
Since here we want to construct transition probability matrix from the given stationary

distribution π , we need to modify the objective function. Then the new optimization
problem is the following:

max
Pi j

{
N

∑
j=1

π j

(
−

N

∑
i=1

Pi j logPi j

)
−

N

∑
j=1

(
β

N

∑
i=1

Pα
i j

)}
(13)

subject to




N

∑
i=1

Pi j = 1, j = 1,2, · · · ,N

Pπ = π
Pi j ≥ 0, i, j = 1,2, · · · ,N.

(14)
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Figure 1: The Probability Distribution q for the Case of A2,3. Method in [2] (Left) and
Our method (Right)

The parameter w j represents the weighting of state j.
Again we adopt both the weighted variances (the larger the better) and weighted en-

tropies (the smaller the better) of the column distributions of P as two possible mea-
surements of solutions (they give consistent results in our numerical experiments). The
weightings are the probability mass of the given stationary distribution π . In practice,
we try different values of α and β to obtain the best result. We also employ grid search
approach for finding the optimal values of α and β with grid size of 0.01. Here α ranges
from 0.01 to 0.99 and β ranges from 0.1 to 2.0.

3 Numerical Experiments
We first present two numerical examples of PBNs with n = 2,m = 2 and n = 2,m = 3

to demonstrate the proposed method for Problem 1. We then give an example used in [6]
to demonstrate the proposed method for Problem 2.

3.1 Numerical Examples for Problem 1
In this section, we give two two-gene examples to compare with the method proposed

in [2]. Using our new entropy approach, we obtain the solution as shown in Figure 1
(Right). The optimal solution is reached when α = 0.77 and β = 1.50 in both cases.
From the solution, we note that the re-constructed PBN is supposed to be dominated
(over 99.7%) by the 6th, the 8th the 10th, the 12th, the 13th and the 15th BNs. From
the dominated BNs, one can therefore construct the underlying regulatory rules, i.e., their
truth tables. Here we see that our method can be used to identify the major components
of the BNs constituting the PBN better than the method in [2], see Figure 1 (Left).

We then consider the case n= 2 and m= 3. The observed transition probability matrix
of the PBN is given as follows:

A2,3 =




0.1 0.3 0.2 0.1
0.2 0.3 0.2 0.0
0.0 0.0 0.6 0.4
0.7 0.4 0.0 0.5


 . (15)

Using our modified entropy approach, the optimal solution is reached when α = 0.61 and
β = 0.6. It is clear that our method give a “sparser” solution.
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3.2 A Numerical Example for Problem 2
In this section, we give a numerical example for Problem 2 to compare with the so-

lution obtained by the method proposed in [6]. Given the stationary distribution π =
(0.1,0.2,0.3,0.4) of a Markov chain of four states, we want to construct the transition
probability matrix corresponding to it. In [6], the optimal solution obtained is given as
follows:

P1 =




0.1860 0.1344 0.0947 0.0653
0.2390 0.2220 0.2010 0.1784
0.2741 0.2918 0.3031 0.3083
0.3009 0.3518 0.4012 0.4480


 .

Using our our method, we get the optimal transition probability matrix as follows:

P2 =




0.0000 0.0830 0.1126 0.1240
0.0000 0.2097 0.2234 0.2276
0.1902 0.3250 0.3115 0.3063
0.8098 0.3824 0.3525 0.3420


 .

The optimal solution is reached when α = 0.94 and β = 1.6. It is clear the our method
gives a “sparser” solution.

4 Concluding Remarks
We present two modified entropy methods for constructing a PBN from a given sparse

transition probability matrix and constructing a sparse transition probability from a given
stationary distribution. Newton’s method in conjunction with CG method is then applied
to solving the inverse problem. We also give the sparsity comparison with other methods.
The preliminary results of some small size networks is encouraging. There are two major
limitations of our proposed method. The size of the problem increases exponentially with
respect to the number of genes, in further research, we will consider much larger size
examples and designing suitable preconditioners so as to accelerate the convergence rate
of the CG method. Moreover, the study of the optimal parameters α and β is another
interesting issue.
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