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Abstract Probabilistic Boolean Networks (PBNs) are useful models for modeling genetic regula-
tory networks. In this paper, we propose efficient algorithms for constructing a sparse probabilistic
Boolean network when its transition probability matrix and a set of possible Boolean networks are
given. This is an interesting inverse problem in network inference and it is important in the sense
that most microarray data sets are assumed to be obtained from sampling the steady-state.
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1 Introduction
There are many formalisms and mathematical models proposed in the literature to

study genetic regulatory networks such as Boolean networks (BNs) [4], regression model
[9], Probabilistic Boolean Networks (PBNs) [5]. Among these models, BN and its exten-
sion PBN have received much attention. BN was first introduced by Kauffman [4]. In a
BN, the gene expression states are quantized to only two levels: on and off (represented
as 1 and 0). The target gene is predicted by several genes called its input genes via a
Boolean function. When the input genes and the Boolean functions are given, then we
say that a BN is defined. We remark that a BN is a deterministic model. Due to the facts
that genetic regulation process exhibits uncertainty property and microarray data sets have
errors due to experimental noise in the complex measurement processes, BNs have been
extended to PBNs (stochastic models). In a PBN, for each gene, there can be more than
one Boolean function and selection probabilities are assigned to the Boolean functions.
The network dynamics of a PBN can be studied in a Markov chains framework [5]. In a
PBN, the network behavior is characterized by its transition probability matrix. A matrix
approximation method was proposed in [1] to get an approximation of the steady-state
probability distribution efficiently. One can understand a genetic network and identify the
influence of different genes via such a network [2]. Here we study an inverse problem in
network inference from steady-state data. The problem is important in the sense that most
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microarray data sets are assumed to be obtained from sampling the steady-state [3]. An
entropy approach for this problem has been proposed in [3] and here we focus on getting
sparse solution. We propose efficient algorithms for constructing a sparse PBN when its
transition probability matrix and a set of possible BNs are given.

The remainder of the paper is organized as follows. Section 2 presents the inverse
problem. In Section 3 we give efficient algorithms for constructing a sparse PBN. Nu-
merical examples are also given to demonstrate the proposed algorithms in Section 4.
Finally concluding remarks are given in Section 5.

2 The Inverse Problem of Construction of PBNs
Suppose we are given the transition probability matrix A of the PBN with the possible

BNs constituting the PBN being given by {A1,A2, . . . ,AN}. That is to say

A =
N

∑
j=1

q jA j.

Here A j is the corresponding transition probability matrix (Boolean matrix) of the jth BN
and q j is the probability of choosing the jth BN. Thus the larger the value of q j is, the
more important the corresponding BN will be. We are to estimate q = (q1,q2, . . . ,qN)

T

which is a probability distribution and it is also the weightings of the corresponding
Boolean networks. The inverse problem here is to get the parameters q j, j = 1,2, . . . ,N
and we require q to be sparse so that we can get those dominant BNs. Now we let the
matrix V = [v1,v2, . . . ,vN ] where v j = A jp, p is the stationary distribution of the PBN,
the steady-state behavior of the PBN. Then

Ap =

(
N

∑
j=1

q jA j

)
p =

N

∑
j=1

q j(A jp) =
N

∑
j=1

q jv j =V q = p

Then one possible way to get q j is to consider the following non-linear programming
problem:

h(q∗) = min
q
{‖V q−p‖2

2 +λ‖q‖α
α} (1)

subject to
N

∑
j=1

q j = 1 and 0≤ q j ≤ 1, j = 1,2, . . . ,N, (2)

where ‖q‖α
α = ∑N

j=1 |q j|α and 0≤ λ ≤ 1, 0≤ α ≤ 1.
In the non-linear programming problems (1)-(2) there are two parameters λ and α ,

where 0≤ λ ≤ 1, 0≤α ≤ 1. Actually, there are two objectives in the non-linear program-
ming problem (1)-(2). One is recovering the PBN, i.e., min{‖V q−p‖2

2} and the other one
is finding a sparse solution.

The motivation of the above formulation comes from [6, 7]. Xu et al. [6, 7] studied
the L1/2 a regularization problem for variable selection and sparse reconstruction. Their
problem takes the following form: min{‖Hx− b‖2

2 + λ‖x‖α
α}. They note when α = 0

the result obtained is the most sparse and α = 1 is less sparse than α = 0. We note that
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the main differences between our inverse problem and their problem is that we have the
constraint (2). Moreover, when α = 1, since ∑N

i=1 qi = 1 and qi ≥ 0, the second term of
the objective function has no effect and we expect not to get good sparse solution. From
our numerical examples in subsection 4.2 , we notice that when α is about 0.97 and λ is
about 0.02, the result is better, because we recover the dominant BNs of PBN. But if α is
too small or λ is too large, the solution obtained from Lingo may have only one nonzero
element, in this case there is only one BN and the BN cannot recover PBN and may be
not the dominant BN of the PBN.

3 The algorithm
The non-linear programming problem (1)-(2) can be solved by feasible direction

method using Lingo. The examples in this note were solved by Lingo 9 [8]. We de-
note the solution of the non-linear programming problem (1)-(2) by q̃ = (q̃1, q̃2, . . . , q̃N).
Similar to those in [6, 7], for variable selection, we only select the nonzero q̃i correspond-
ing BNs as the dominant BNs of the PBN, but the real qi may be not q̃i. For example,
for some j ∈ {1,2, . . . ,N} the matrix B = A− q̃ jA j may have negative elements but this
is impossible in practice. In order to get an approximate real q we should modify q̃. We
use the following dominant modified algorithm (DMA) to modify q̃.

Algorithm (Dominant Modified Algorithm)
Let q = q̃;
qq=find(q̃);% find(x) is a function to get the index of the nonzero elements in x,
L=length(qq);
for i = 1 : L

j = qq(i); B = A− q̃ j ∗A j;
if( some elements of B are negative)

let γ = max{| negative elements of B|};
B = B+ γ ∗A j; q j = q j− γ;

else
B = B−A j; q j = q j +1;
if( some elements of B are negative)
let β = max{| negative elements of B|};
B = B+β ∗A j; q j = q j−β ;

endif
endif

endfor
output q

Here we demonstrate DMA algorithm by a simple example. Suppose the transition
probability matrix of a PBN and the possible BNs constituting the PBN are given respec-
tively by

A =

(
0.3 0.6
0.7 0.4

)
,A1 =

(
1 0
0 1

)
,A2 =

(
0 1
1 0

)
.
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One possibility is the following. If q̃1 = 0.45, then

B = A−0.45A1 =

(
−0.15 0.6

0.7 −0.05

)
,

because matrix B has negative elements, so γ = max{|−0.15|, |−0.05|} = 0.15 and we
update B by

B+ γA1 =

(
0 0.6

0.7 0.1

)
.

Thus we get q1 = 0.45− γ = 0.3.
The purpose of the else part of the first if-clause in DMA is to modify the nonzero

elements of q such that it becomes as large as possible, since we hope that the nonzero q̃i
corresponding BNs is the dominant BNs of the PBN. The following example illustrates
our purpose. If q̃1 = 0.25, then

B = A−0.25A1 =

(
0.05 0.6
0.7 0.15

)
.

Clearly B are nonnegative, then by the DMA algorithm we update B as follow:

B−A1 =

(
−0.95 0.6

0.7 −0.85

)
,

and q1 = 0.25+1 = 1.25. Then β = max{|−0.95|, |−0.85|}= 0.95, we update B again

B+0.95A1 =

(
0 0.6

0.7 0.1

)
,

so we get q1 = 1.25− β = 0.3 > 0.25 = q̃1 and q1 can’t be larger, because the (1,1)
element of B is zero.

4 Numerical Examples
In this section we demonstrate our proposed algorithm with some numerical examples

taken from [10].

4.1 Example 1
In the first example, we consider a PBN with three genes n = 3. The Boolean matrices

A1, A2, A3 and A4 are given as follow:

A1 =




0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0


 , A2 =




1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0


 ,

A3 =




0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0


 , A4 =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0


 .
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λ α q̃1 q̃2 q̃3 q̃4 λ α q̃1 q̃2 q̃3 q̃4
0.5 0.5 0 0 0 1 0.3 0.9 0 0 0.43 0.57
0.5 0.6 0 0 0 1 0.1 0.7 0 0 0.43 0.57
0.5 0.7 0 0 0 1 0.1 0.8 0 0 0.44 0.56
0.5 0.8 0 0 0 1 0.05 0.5 0 0 0.44 0.56
0.5 0.9 0 0 0 1 0.05 0.8 0.15 0 0.48 0.37
0.5 0.95 0 0 0.43 0.57 0.05 0.9 0.18 0 0.49 0.33

Table 1: Solutions for Different α and λ .

λ α q1 q2 q3 q4
0.5 0.9 0 0 0 0.3
0.1 0.8 0 0 0.45 0.3
0.05 0.8 0.15 0 0.45 0.3
0.05 0.9 0.15 0 0.45 0.3

Table 2: New Solutions by Dominant Modified Algorithm.

Suppose the true q = (0.15,0.10,0.45,0.30)T , then the transition probability matrix A of
the PBN is given by

A =




0.4000 0 0.4500 0 0 0 0.1500 0
0.6000 0 0.3000 0 0 0 0.1000 0

0 0.3000 0 0 0.2500 0.1500 0 0
0 0.4500 0 0 0 0.1000 0 0
0 0 0.1500 0 0 0 0.4500 0.40
0 0 0.1000 0 0 0 0.3000 0.60
0 0.1000 0 0.4000 0.7500 0.4500 0 0
0 0.1500 0 0.6000 0 0.3000 0 0



,

It is straightforward to check that the stationary distribution is given by

p = (0.3318, 0.3318, 0.2531, 0.1849, 0.4006, 0.3563, 0.5679, 0.2676)T .

We may apply the feasible direction method using Lingo and DMA algorithm to find qi
pretending that qi are not known. We use Lingo to solve the non-linear programming
when λ and α are different and the solutions are given in Table 1.

From the left of Table 1, we know when λ = 0.5 and 0.5 ≤ α ≤ 0.9, there is only
one nonzero in the solution and A4 is the dominated BN. When λ = 0.5 and α = 0.95,
we get two dominated BNs, and the result is better. Compare the right of Table 1 with
its left, we see that if λ is smaller α may have more value to choose. Then we use the
DMA algorithm to modify q̃. The new solutions obtained q are given in Table 2. We note
that when α = 0.1, λ = 0.8 the dominated BNs A3 (45%), A4 (30%) matches with A3
(q3 = 45%) and A4 (q4 = 30%).
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λ α m q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8
0.10 0.90 1 0 0 1 0 0 0 0 0
0.10 0.92 2 0.445 0 0 0 0.555 0 0 0
0.10 0.95 3 0.200 0 0.411 0 0.389 0 0 0
0.05 0.70 1 0 0 1 0 0 0 0 0
0.05 0.90 2 0.446 0 0 0 0.554 0 0 0
0.05 0.92 3 0.200 0 0.411 0 0.389 0 0 0
0.05 0.95 3 0.200 0 0.411 0 0.389 0 0 0
0.05 0.98 4 0 0 0.160 0.382 0.382 0.076 0 0
0.02 0.90 3 0.201 0 0.411 0 0.388 0 0 0
0.02 0.98 6 0.080 0.219 0.081 0.233 0.290 0 0 0.097
0.01 0.95 4 0 0 0.161 0.381 0.382 0.076 0 0
0.01 0.98 6 0.080 0.218 0.082 0.231 0.290 0 0 0.098

Table 3: Solutions for Different α and λ .

4.2 Example 2
In Example 1 N = 4, in this example we will consider the situation N = 8. Those A1,

A2, A3 and A4 are the same as in Example 1. While A5, A6, A7, A8 are given as follow:

A5 =




0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


 , A6 =




0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


 ,

A7 =




0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0


 , A8 =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


 .

Suppose q = (0.0709,0.1789,0.0541,0.3253,0.2965,0.0363,0.0297,0.0082)T is a ran-
domly generated probability vector. The transition probability matrix of the PBN is

A =




0.5042 0.0082 0.0838 0 0 0.2965 0.0709 0
0.1250 0.0297 0.3335 0 0 0.0363 0.1789 0
0.0445 0.3253 0 0 0.5826 0.0709 0.2965 0
0.3262 0.0541 0 0 0 0.1789 0.0363 0

0 0.0363 0.3674 0.0445 0 0.0297 0.0541 0.5487
0 0.2965 0.2152 0.3262 0 0.0082 0.3253 0.4512
0 0.1789 0 0.5042 0.4173 0.0541 0.0297 0
0 0.0709 0 0.1250 0 0.3253 0.0082 0



.

It is straightforward to check that the stationary distribution is given by

p = (0.4107,0.2862,0.4403,0.2463,0.3297,0.4708,0.3488,0.2071)T .

The results of the non-linear programming when λ and α are different which solved by
Lingo are given in Table 3 (where m is the number of nonzero element of q̃). Then we
use DMA algorithm to modify q̃. The solutions q obtained are given in Table 4.
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λ α m q1 q2 q3 q4 q5 q6 q7 q8
0.10 0.9 1 0 0 0.054 0 0 0 0 0
0.05 0.9 2 0.071 0 0 0 0.297 0 0 0
0.05 0.98 4 0 0 0.054 0.325 0.297 0.036 0 0
0.01 0.98 6 0.071 0.179 0.054 0.325 0.296 0 0 0.008

Table 4: New Solutions by Dominant Modified Algorithm.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1

1.5

2

2.5

3

3.5

4

a

n

The number of nonzero element of q, lambda=0.05

0.02 0.04 0.06 0.08 0.1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Lambda

n

The number of nonzero element of q, Alpha=0.9

Figure 1: The number of nonzero elements of q̃, when λ = 0.05(left), α = 0.9(right)

From Tables 3 and 4 when λ = 0.1 and α = 0.9 there is only one nonzero in q̃,
q̃3 = 1, after using DMA algorithm we get q3 = 0.0541. Although q3 = 0.0541 recover
the q3 = 0.0541, A3 is not the dominated BN. We note that as shown in Figure 1 and Table
3, on one hand, when λ is fixed, the number of nonzero elements of q̃ is increasing as α
is increased. On the other hand, when α is fixed, the number of nonzero elements of q̃
is decreasing as λ is increased. We also do other examples and find that the number of
nonzero elements in q̃ have the same change patterns. From the examples, we notice that
if λ is too large, q̃ will be too sparse, the BN we got may not the dominant BN (or the
probability of the BN is the dominant is small). So one should let λ small about 0.05 and
then if we want to get a sparser q̃, we could let α to be 0.5, else let α close to one.

5 Discussions
In this paper, we consider the sparse inverse problem of PBN. Firstly, we solve the

non-linear program problem (1)-(2) by Lingo 9, and then propose a method to modify the
solution of the non-linear programming problem. From numerical examples we discuss
the problem of how to choose parameter λ and α . Furthermore, Lingo 9 could find the
local optimal solution of our examples and the complexity of DMA is O(N).

The sparse inverse problem could also be considered as the following nonlinear pro-
gramming problem:

h(q∗) = min{‖
N

∑
j=1

q jA j−A‖2
2 +λ‖q‖α

α} (3)
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subject to
N

∑
j=1

q j = 1 and 0≤ q j ≤ 1, j = 1,2, . . . ,N, (4)

where 0≤ λ ≤ 1, 0≤ α ≤ 1. We shall study this in the future.
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