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Abstract  Identification of gene regulatory networks is useful in understanding gene 
regulation in any organism. Some regulatory network information has already been 
determined experimentally for model organisms, but much less has been identified for 
non-model organisms, and the limited amount of gene expression data available for 
non-model organisms makes inference of regulatory networks difficult. This paper proposes a 
method to determine the regulatory links that can be mapped from a model to a non-model 
organism. Mapping a regulatory network involves mapping the transcription factors and target 
genes from one genome to another. In the proposed method, Basic Local Alignment Search 
Tool (BLAST) and InterProScan are used to map the transcription factors, whereas BLAST 
along with the transcription factor binding site motifs are used to map the target genes. 
Experiments are performed to map the regulatory network data of S. cerevisiae to A. thaliana 
and analyze the results. Since limited information is available about gene regulatory network 
links, gene expression data is used to analyze results. A set of rules are defined on the gene 
expression experiments to identify the predicted regulatory links that are well supported. More 
than two-thirds of the predicted regulatory links that were analyzed using gene expression data 
have been verified as correctly mapped regulatory links in the target genome. 
Keywords  Transcription Factors; Target Genes; Binding Site Motif; Regulatory Network; 
Gene Regulation; BLAST; InterProScan; Mapping; Model Organism; Non-Model Organism 

1 Introduction 
A transcriptional gene regulatory network [1] represents a collection of 

regulatory elements, which are target genes and transcription factors, interacting 
with each other in a cell to regulate the rate of transcription of genes in the network. 
A regulatory relationship in a gene regulatory network consists of a transcription 
factor, a target gene, and the type of regulatory relationship between the regulatory 
elements, either positive or negative. 

These regulatory relationships in a network can help answer current biological 
questions, such as the identification of genes and proteins related to various diseases, 
and are useful in novel drug design and development [2]. These regulatory 
relationships can also be useful in understanding the differences in gene regulation 
between different organisms. Since it is critical to study how genes are involved in 
regulation, or the way they are themselves regulated by other genes, the 
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determination of gene regulatory networks is extremely important for understanding 
gene regulation by identifying these genes and their relationships. 

Significant time and resources are required for the experimental determination 
of these gene regulatory networks. Experimental techniques such as gene-knockout 
experiments [3] are extremely time-consuming and in many cases inadequate to 
identify a regulatory network for an organism at the genome level. The amount of 
genetic information available for newly sequenced genomes is increasing 
exponentially, and therefore it is essential to develop methods to bridge the gap and 
infer regulatory networks for these new genomes. Several computational models 
have been used to represent gene regulatory pathways for model organisms using 
gene expression data, and some models incorporate additional available biological 
knowledge. These models include Boolean Networks [4, 5], Bayesian Networks [6, 
7, 8], Differential equation models [9] and Hybrid Petri Nets [10]. Recently, many 
techniques have started incorporating additional data, such as protein-protein 
interaction data, protein-DNA interaction data, and binding site data, along with the 
gene expression data to get more accurate gene regulatory networks. Additionally, 
many methods are now focusing on using time-course behavior of gene expression 
along with available biological knowledge. Some of the above techniques have 
been discussed in a comparative review [11, 12] of determination of gene regulatory 
networks. The above mentioned techniques cannot be used for non-model 
organisms due to data sparseness. There have been two methods developed, P-MAP 
[13] and another one used in KEGG [14], that use a regulatory network of a model 
organism to infer a regulatory network for a non-model organism. However, these 
methods are limited in their usability for mapping regulatory pathways. 

All these aforementioned methods work well with large amounts of gene 
expression data that are readily available for model organisms. Model organisms are 
the ones that are investigated thoroughly by the biologist by virtue of being simpler 
and easy to manipulate and having short life cycles. The information from these 
model organisms can be mapped to newly sequenced organisms about which less is 
known, called non-model organisms. These non-model organisms have very limited 
data available for using the previously mentioned methods.  

The proposed method involves determining the amount of gene regulatory 
information that can be mapped from a model organism (source genome) to a 
non-model organism (target genome). Identification of regulatory information for a 
non-model organism will help the biologists investigate any new organism at the 
genome level and provide information about the common regulatory relationships 
between the two genomes. The method in this paper involves mapping the 
transcription factors (TFs), target genes (TGs) and their regulatory relationships 
from one genome to another. Gene expression data available for the target genome 
is used in this paper to evaluate the results due to availability of insufficient 
information of regulatory network information for testing. Set of rules are 
established to use the expression information in the gene expression experiments for 
analyzing the predicted regulatory relationships for the target genome. 

In the proposed method, any model organism with available experimentally 
confirmed regulatory network and transcription factor binding site (TFBS) motif 
information can be used as the source genome. However, a model organism closer 
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to the target genome is preferable, since evolutionarily closer organisms will tend to 
have more similar regulatory relationships. The target genome can be any 
non-model organism with available nucleotide sequence data. For experimentation 
and testing purposes S. cerevisiae and A. thaliana have been used in this paper as 
source and target genomes, respectively. S. cerevisiae is a model organism with all 
the required information required for a source genome. A. thaliana, not being a 
non-model organism, is used as the target genome for experimentation purposes 
only, so that the gene expression data available for A. thaliana can be used for 
analysis and verification of the mapped regulatory relationships determined using 
the proposed method. S. cerevisiae and A. thaliana are used as source and target 
genomes, respectively, since there is no suitable pair of organisms that are 
evolutionarily close that have both sufficient regulatory network and gene 
expression information available for verification. Therefore, the results in this paper 
identify the proportion of regulatory relationships that can be mapped from an 
evolutionarily distant model organism. The mapping of TFs between genomes 
based on evolutionary distance has been investigated in our previous work using 
bacterial genomes [16]. We considered 14 bacterial genomes. For each of the 
bacterial genomes, we determined the best e-value threshold for BLAST and the 
best model organism to use between Bacillus subtilis and E. coli. 

2 Methodology 
The three different possible ways in which TFs and TGs can be mapped between 

any two genomes are one to many, one to one and no mapping. The proposed 
method of mapping regulatory relationships and verifying them is described below. 

2.1 Transcription Factor Mapping 
Mapping TFs from one genome to another involves finding similar protein 

sequences in the target genome performing similar functions. The sequence 
alignment tool BLAST [15] and the functional similarity tool InterProScan [17] are 
used for TF mapping, which is the first step in regulatory network mapping.   

The similar regions tend to indicate similar structure or function preserved by 
evolution. Additionally, specific conserved motifs in the protein sequences, called 
protein signatures, define the structure and function of the proteins. Therefore, 
similar protein sequences with common protein signatures generally perform 
similar functions and belong to the same functional group. InterPro [18] is a 
non-redundant database that integrates the commonly used protein signature 
databases. In this paper, the PANTHER (Protein ANalysis THrough Evolutionary 
Relationships) database [19] and its corresponding scanning tools, BLAST and 
hmmsearch, are used within InterProScan. The PANTHER database consists of 
protein sequences classified into families and subfamilies with similar function 
based on published experimental evidence and evolutionary relationships.  

Figure 1 shows that first the BLAST tool is executed, using the target genome 
nucleotide sequence data as the BLAST database and the source genome TFs as the 
query sequences. The BLAST results are those target genome sequences that are 
similar to the source genome TFs. Three different variations can then be followed in 
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this method: the BLAST results can be used without further refinement, or they can 
be refined further by InterProScan using either family or subfamily classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Method to map transcription factors from a source to a target genome 
 
Three result sets of predicted TFs are determined based on sequence similarity 

(TFbl), same protein family (TFf) and subfamily classification (TFsf). Not all the 
TFs can be mapped from one genome to another genome, even when these genomes 
are evolutionarily very close. Moreover, there is no knowledge of the number of 
TFs that should be mapped from one genome to another. Hence, the number of 
confirmed TF mappings is based on the definition of correct mapping used. Each of 
the results from the method are analyzed to find out if a sequence predicted as a TF 
is a experimentally verified TF of the target genome or not. 

The result sets are compared and analyzed using a binary classifier [20]. The 
results are classified into four groups, true positives (TP), false positives (FP), true 
negatives (TN) and false negatives (FN). The TPs are the predicted TFs that are 
present in the available TF database of the target genome. FPs are the predicted TFs 
that are not present in the available TF database. The TFs that are present in the 
available TF database of the target genome but have not been identified by the 
method are the FNs. The sequences that are not present in the available TF database 
and are discarded by the method are TNs. 

2.2 Target Gene Mapping 
Mapping TGs from one genome to another, for a particular TF in a regulatory 

network, involves finding similar TGs in the target genome. These similar TGs 
should have the same function as the source genome TGs. Similar function is 
important in order to have the same type of regulatory relationship in the target 
genome as the regulatory relationship being mapped from in the source genome. 
Since TGs may or may not produce proteins, they cannot be grouped based on 
similar protein signatures, but the BLAST tool can be used to find highly similar 
nucleotide sequences that will tend to have similar function. 
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Additionally, being part of the gene regulation process, the TF of a regulatory 
link binds to the binding site containing the TF binding site (TFBS) motif, which is 
generally located upstream of the TG sequence [21]. The TFs look for specific 
motifs (patterns) in the binding site regions of the TGs based on the type and family 
of the TF. Different TFs have different sets of TFBS motifs that they look for in 
order to regulate their TGs. Hence, the TG being regulated by a certain TF in the 
source genome will tend to have one of the specific TFBS motifs of that TF in its 
binding site region. The binding sites of the mapped TGs in the target genome will 
also tend to contain one of the TFBS motifs of the source genome TF from the 
regulatory link being mapped. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Method to map TGs from a source to a target genome 
 
Figure 2 shows the second step of regulatory link mapping where the TGs are 

mapped from one genome to another. For a particular TG in a regulatory link, the 
BLAST tool is used to find the similar TGs in the target genome. Target genome 
nucleotide sequence data is the BLAST database, and the source genome TGs from 
the regulatory network being mapped are the query sequences. The output of 
BLAST is a set of similar TGs that are then the input for the next step of locating 
the binding sites. The binding site motif locator searches for the TFBS motifs of the 
source genome TF in the similar TG sequences found in the target genome.  

Finally, the genes that are similar (found using BLAST) and have the right 
TFBS motifs (found using the Binding site motif locator) are determined to be the 
predicted TGs for the target genome. This set of predicted TGs are termed TGblbs. 
TGs are also identified using only the BLAST tool, the first step in this TG mapping 
method, producing set TGbl. Another set of predicted TGs named TGbs is 
determined by only searching the TFBS motifs, the second step in this method. 

The result sets are evaluated by comparing the mapped TGs with the available 
binding site data for A. thaliana to determine the number of mapped TGs predicted 
as the correct TGs in the target genome. A binary classifier is used to analyze these 
results the same way as the mapped TFs are analyzed in the previous subsection. 
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2.3 Mapped Regulatory Elements Integration 
The final step of mapping a regulatory network from the source genome is to 

integrate the mapped regulatory elements to obtain the regulatory links of the target 
genome. It is crucial to find out if the predicted TG in the target genome is correctly 
linked to the right TF by the link mapped from the source genome. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Method to integrate mapped regulatory elements for the target genome 
 
Two regulatory links from two different genomes tend to be similar if the two 

TFs from these links bind to the same motifs in the TGs, implying that these TFs 
might regulate the TGs in a similar way. Hence, the TFBS motif of the TF present 
in the TG of the source genome should also be present in the TG of the target 
genome. In this final step of regulatory network mapping shown in Figure 3, for 
every link in the source genome regulatory network, the corresponding predicted 
TFs are located among the mapped TFs identified in the first step of network 
mapping. The TFBS motifs of the source genome TF are searched in its TG. The 
TFBS motifs that are present in the source genome TG are then searched in the 
corresponding mapped TG nucleotide sequences of the target genome. Finally, these 
TFs and the TGs, which contain the specific TFBS motifs, are combined to obtain 
the target genome regulatory links.   

Three sets of predicted regulatory links are identified using this method. The 
first set TFsf-TGblbs is obtained by integrating the predicted TF set TFsf, 
combining BLAST similiarity and subfamily classification, and the predicted TG 
set TGblbs, combining BLAST similarity and TF binding sites. The set TFf found 
using BLAST similarity and family classification is integrated with the set TGblbs 
to identify the second predicted regulatory links set TFf-TGblbs. The third set 
TFsf-TGbs is identified by combining the mapped TFs from the set TFsf and the 
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mapped TGs from the set TGbs, found using binding sites alone. 

2.4 Regulatory Links Confirmation 
The mapped regulatory links of the target genome cannot be easily confirmed 

because very limited gene regulatory information is available for the model 
organisms that can be used for verifying the predicted regulatory links. Gene 
expression data is a type of data that can be used for analyzing the mapped 
regulatory links of the target genome and is available for verification. 

Gene expression data contains expression levels of some of the genes 
investigated for a genome in any gene expression experiment. Different 
experiments for the genome contain different expression levels of the genes 
depending on the experimental conditions. On the basis of the expression value, a 
gene is considered expressed or not in any given experiment. The expression levels 
of the TF and the TG from a predicted regulatory link in different experiments can 
be investigated to determine if the expression data supports the regulatory 
relationship in the predicted link. In the first step, the predicted regulatory links' 
data and the gene expression data from a few experiments for the target genome is 
used to check if the expression values of the regulatory elements are present in the 
experiments. For any predicted regulatory link, the information of the regulatory 
elements, as expressed (Yes), not expressed (No) or absent (ab), in every gene 
expression experiment is collected. A set of rules is established to verify the 
regulatory links based on regulation type, TF expression and TG expression in the 
gene expression experiments as shown in Table 1. Using these rules, the gene 
expression experiments for every predicted regulatory link are distributed into three 
groups, Confirmed (C), Contradictory ( C ) and Neutral (N). The number of 
elements in the Confirmed group (c) for a predicted regulatory link represents the 
number of gene expression experiments that verify that the predicted regulatory link 
is correctly mapped in the target genome. The number of gene expression 
experiments that contradict the regulatory relationship in the predicted regulatory 
link act as the number of elements in the Contradictory group ( c ) for that 
regulatory link. The number of elements in the Neutral group (n) for a predicted 
regulatory link corresponds to the number of gene expression experiments that 
neither confirm nor contradict that regulatory link but can provide additional 
information. The gene expression experiments for a predicted regulatory link are 
ignored if they have the expression values of the TFs and TGs present in the 
experiments but neither support nor contradict that regulatory link and also do not 
provide any further information. If the expression information of a TF or TG from a 
regulatory link is absent in a gene expression experiment, then that experiment is 
ignored for that regulatory link, since nothing can be inferred unless the expression 
information of all regulatory elements is available. 

For a positive gene regulation type (+) in a regulatory link, the TG should be 
expressed if the TF is expressed in an experiment. Therefore, if both the TF and TG 
from a predicted regulatory link are expressed in an experiment then this 
experiment is classified as Confirmed. If the TF is expressed but the TG is not, then 
the experiment is considered to be Contradictory because the expressed TF is not 
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able to express the TG as it should in the case of positive gene regulation. For a 
regulatory link, if the TG is expressed but the TF is not, then the experiment is 
marked as Neutral because it does not confirm or contradict the regulatory link. 
This experiment does allow that the TG may be regulated by other TFs as well. The 
TF not expressed in the experiment might be expressed in another experiment 
supporting the regulatory link. Additionally, if either the TF or the TG from a 
predicted regulatory link is not expressed in an experiment, then nothing can be 
inferred and that experiment is ignored for that regulatory link. 

 
Table 1: Rules to verify regulatory links using gene expression data 

TF Expression Gene Expression 
Result 

  (+) (-) 

Yes Yes C  C  

Yes No  C  C 

No Yes N C 

No No --  C  

 
In the case of negative gene regulation (-), the TG should not be expressed if the 

TF is expressed in the experiment. Accordingly, if both the TF and the TG from a 
predicted regulatory link are expressed or are not expressed, then the experiment is 
marked Contradictory. But for a predicted regulatory link, if the TF is expressed and 
the TG is not, or if the TF is not expressed and the TG is expressed, then the 
regulatory link status in that experiment is considered to be Confirmed.  

Finally, each regulatory link is analyzed by identifying the number of times that 
link has been Confirmed, Contradicted and Neutral in all the gene expression 
experiments used. These values are then compared in different ways to evaluate the 
results for the regulatory links. This counting-based approach is needed because the 
limited number of experiments normally available are usually insufficient to predict 
regulatory links from the expression data. 

2.5 Limitations of Regulatory Network Mapping 
Using the method for regulatory network mapping described in the previous 

subsection, only transcription gene regulatory network data is being mapped from 
one genome to another, and this does not include any information about the 
post-transcription regulation process. 

It is important to understand how many regulatory links are conserved over 
different genomes since there is no distinct definition of these. Many regulatory links 
from the source genome cannot be mapped to the target genome for various reasons. 
Firstly, both the TF and the TG in a regulatory link might not have similar TFs and 
TGs at all in the source genome, depending on how different the genomes are. 
Secondly, many similar TFs or TGs present in the source genome might not have 
their corresponding similar TFs or TGs present in the target genome. Thirdly, TFBS 
motifs need not be conserved well among genomes due to changes in the sequences 
over time. Fourthly, not all source genome TGs contain the TFBS motifs of their 
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regulator (TF) in the available regulatory network used for mapping. 
Additionally, some binding sites are present in the nucleotide sequences but are 

not involved in the regulation of genes in certain conditions by being inactive [22]. 
These binding sites can be inactive due to the nucleosomes occupancy hindering the 
binding of the TF to the binding site in any genome. About 75 to 90 percent of the 
DNA in a genome is bundled up in nucleosomes. The unwrapped DNA stretching 
between two neighboring nucleosomes is called linker DNA. Hence, binding sites 
present on the linker DNA are largely the active binding sites available to interact 
with the proteins to form protein complexes.  

It has been estimated in a research study [22] that there might be 0 to 200 possible 
TGs for a TF in S. cerevisiae, though approximately only 3 percent of the TGs will 
have their binding sites bind to these TFs of S. cerevisiae. Similar density of binding 
between TGs and TFs is also found in higher eukaryotes. This suggests that gene 
expression data can only support the three percent of the possible regulatory 
relationships that actually exist at a certain time. Some binding sites may not even be 
involved in the gene regulation process and have no change in their gene expression 
values in two different treatments. These binding sites might be conditional relying 
on the presence or absence of other TFs. 

It is also shown [22] that binding patterns for some TFs are dynamic and change 
under different environmental conditions. Also, all the predicted regulatory links 
may not necessarily be the direct links in the target genome [22], and so the TGs can 
be regulated indirectly by the TFs based on the feedforward loop motif concept. In 
feedforward motifs, one TF regulates another TF, and they both regulate a TG, though 
the regulation between the first TF and the TG is at least partly an indirect regulation. 
It is extremely difficult to predict indirect regulatory links without using substantial 
gene expression data, and so far only limited information about the direct regulatory 
links is available for the model organisms.  

All the above facts show that gene regulatory networks are very complex 
networks and it is extremely difficult to integrate all the different factors mentioned 
earlier to determine regulatory networks, even for a model organism.  

3 Results and Analysis 
The results of the three steps, transcription factor mapping, target gene mapping 

and regulatory element integration are discussed in this section. The analysis of the 
results using gene expression data of Arabidopsis thaliana is also described. 

3.1 Transcription Factor Mapping 
The TF mapping result sets from S. cerevisiae to A. thaliana are shown in Table 2. 

There are 35351 nucleotide sequences [23] used for TF mapping, and 1922 TFs [24] 
for A. thaliana used to analyze the results. 

Even though S. cerevisiae is a much smaller genome than A. thaliana, many 
confirmed TFs have been identified for A. thaliana. A large number of nucleotide 
sequences have been determined by this method to not be TFs, thus contributing to 
the high value of true negatives. The number of mapped links decreases more from 
set TFf to set TFsf than from set TFbl to set TFf. The number of distinct TFs mapped 
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decreases from set TFbl to set TFf by 333 and from set TFf to set TFsf by 316. This 
indicates that the results are refined from set TFbl to TFf when protein family 
classification is used along with sequence similarity for TF mapping. Protein 
sub-family classification further refines the results from set TFf to Tfsf. 

 
Table 2: TP, FP, FN and TN values for the mapped TFs in the target genome 

 TFbl TFf TFsf 

Number of mapped links 1344 903 212 

Number of mapped TFs 767 434 118 

True Positives (TP) 400 328 91 

False Positives (FP) 367 106 27 

 True Negatives (TN) 33062 33323 33402 

False Negatives (FN) 1522 1594 1831 

 
Comparing results in set TFbl and set TFf, there is a large decrease of 261 in false 

positives and a low decrease of 72 in true positives from set TFbl to set TFf. 
Therefore, set TFf is better than set TFbl by refining the BLAST results based on 
family classification. There is also a low decline in the percentage of available TFs 
correctly identified in set TFbl and set TFf. This indicates that mapping TFs with 
sequence similarity and protein family classification gives better results than using 
only sequence similarity. Comparing results in set TFf and set TFsf, there is a huge 
decline of 237 in true positives and a low decrease of 79 in false positives from set 
TFf to set TFsf. This indicates that large number of true TFs are lost with only a few 
wrongly mapped TFs discarded from set TFf to set TFsf. Therefore, with a huge 
decline in true positives and in the percentage of available TFs correctly predicted, 
and a low decrease in false positives, set TFf has better results than set TFsf. This 
suggests that the refined results in set TFsf that are obtained using protein subfamily 
classification are not better than the results in set TFf based on protein family 
classification. True negatives in all the mapped TF sets are very high because most of 
the sequences that are not TFs have very low similarity to the TF sequences. 

3.2 Target Gene Mapping 
The three sets of results for TGs mapped from S. cerevisiae to A. thaliana are 

shown in Table 3. There are 25191 TGs present in the available binding site data of 
A. thaliana [25] used for analyzing the results. 

The first set TGbl is obtained as a result of using BLAST only, the first step in 
the TG mapping method. The second step in the TG mapping method, which 
includes searching TFBS motifs, is used to identify the second set TGbs. The third 
set TGblbs is determined using both BLAST and searching TFBS motifs. Results 
for set TGbs show that most of the A. thaliana sequences are predicted as TGs 
containing TFBS motifs in the target genome. True positives are the highest for this 
set along with low false negatives. 
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Table 3: TP, FP, FN and TN values for the mapped TGs in the target genome 
 TGbl TGbs TGblbs 

Number of mapped TGs 2252 35181 2252 

True Positives (TP) 1717 25180 1717 

False Positives (FP) 535 10001 535 

True Negatives (TN) 9625 159 9625 

False Negatives (FN) 23474 11 23474 

 
Almost all the TGs are identified in A. thaliana, but these predicted TGs need to 

be the correctly mapped TGs linking to the right TF. This will be verified in the 
analysis of predicted regulatory links discussed in the following subsection. To 
refine these results, BLAST is used first to find highly similar TGs before searching 
for the TFBS motifs. Comparing set TGbl and set TGblbs, same set of target genes 
are identified in both result sets. These results show that the TFBS motifs were 
found in all the highly similar TGs identified using BLAST. Hence, no true TG is 
lost when the predicted TGs (set TGbl) determined using BLAST are refined further 
by searching the TFBS motifs in the nucleotide sequences, resulting in set TGblbs. 

3.3 Mapped Regulatory Elements Integration and Confirmation 
The two sets of TFs based on the same family (TFf) and subfamily (TFsf), 

identified in the first step of regulatory network mapping, are integrated with the 
two sets of predicted TGs (TGbs, TGblbs) determined in the second step. The 
results of regulatory elements integration consist of three sets of regulatory links 
mapped from S. cerevisiae to A. thaliana as shown in Table 4. There are 14254 
regulatory links present in the available regulatory network [26] of S. cerevisiae. 

The predicted regulatory links for A. thaliana are then analyzed using gene 
expression data [24] to classify the gene expression experiments for each regulatory 
link into Confirmed (C), Contradictory ( C ), and Neutral (N) groups based on the 
rules described in the previous section. The total number of Confirmed, 
Contradicted and Neutral values for a regulatory link to be analyzed should be equal 
to the number of gene expression experiments of A. thaliana used. Then the 
Confirmed (c), Contradicted ( c ), and Neutral (n) values are compared in different 
ways in Table 4 to analyze the predicted regulatory links using the 43 gene 
expression experiments for A. thaliana. 

In the fifth row, weights of two and one are assigned to the Contradicted and 
Neutral values to obtain a threshold for comparing it to the Confirmed value. If the 
Confirmed value is higher than this threshold for a regulatory link, then the link is 
considered to be a verified true regulatory link mapped in the target genome. This 
criterion is used to make sure that less than 25 percent of the gene expression 
experiments contradict any regulatory link. This is done to ignore any error due to 
outliers in the gene expression data. It is also evaluated based on the ratio between 
the Confirmed and Contradicted values for the regulatory links, to determine for 
which links there is much greater evidence to support it than there is to contradict it. 
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The Confirmed value is compared with thrice and twice the value of Contradicted in 
the sixth and seventh rows of Table 4. The regulatory links satisfying these 
conditions are well supported by the gene expression experiments. In the eighth row, 
the number of regulatory links with a Confirmed value higher than or equal to their 
Contradictory value but lower than twice the Contradictory value are determined. 
The regulatory links that meet this condition are not as well supported by the 
expression data. The Ninth row shows the number of regulatory links that have a 
Contradicted value higher than their Confirmed value. These regulatory links are 
not supported by the gene expression data. 

 
Table 4: Regulatory links confirmed for A. thaliana using gene expression data 

 TFsf- 
TGblbs 

TFf- 
TGblbs 

TFsf- 
TGbs  

Number of mapped TFs 118 434 118 

Number of mapped TGs 2252 2252 35181 

Number of links mapped 43423 480524 536154 

Number of regulatory links analyzed 3056 8621 6085 

c  ≥  2 nc +  2090 2628 2995 

c  ≥  3 c  2109 2375 2968 

2 c  ≤ c  <  3 c  58 344 30 

c  ≤ c  <  2 c  103 215 100 

c  < c  786 5687 2987 

 
Comparing set TFsf-TGblbs and set TFf-TGblbs, two-third of the analyzed 

regulatory links are verified as true regulatory links for set TFsf-TGblbs, whereas 
only one-third of the analyzed regulatory links are verified for set TFf-TGblbs. 
Therefore, the results from the TFsf-TGblbs set are better, with a much higher 
percentage of correctly mapped regulatory links in the target genome.  

Comparing set TFsf-TGblbs and set TFsf-TGbs, the percentage of regulatory 
links analyzed with a Contradicted value more than the their Confirmed value 
increases from approximately 25 percent to about 50 percent from set TFsf-TGblbs 
to set TFsf-TGbs. This indicates that half of the regulatory links analyzed in set 
TFsf-TGbs are definitely not supported by the gene expression 
experiements.  Hence, set TFsf-TGblbs has better results than the other regulatory 
link sets, based on having a higher percentage of true regulatory links identified and 
a lower percentage of links contradicted more than they are confirmed. This set also 
shows that, even though S. cerevisiae and A. thaliana are two organisms that are 
evolutionarily far apart, they still do share regulatory information among them. 

The TF mapping result set TFf comprises the best results when we only consider 
how many TFs are mapped, but it does not produce the best regulatory links set 
when integrated with the mapped TG set TGblbs. This indicates that the set TFsf 
containing the mapped TFs based on sequence similarity and subfamily 
classification are actually the most efficiently and correctly mapped TFs for the 
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purpose of mapping regulatory links.  
The TGbs set, containing the best results of mapped TGs from the previous 

subsection, does not work well when used in regulatory elements integration. The 
additional predicted TGs in set TGbs lead to too many false regulatory links in the 
set TFsf-TGbs. These false links indicate that many of the true TGs identified for 
the target genome in set TGbs are, however, not the correctly mapped TGs linked to 
the right TF in the corresponding set TFsf-TGbs. All the predicted TGs do contain 
the TFBS motifs for some TF but these TGs need to correspond to the correct TF, 
identifying the right regulatory link in the target genome. These results suggest that, 
in order to be used to map regulatory links, the TGs identified in the target genome 
using TFBS motifs also need to be similar in sequence to the source genome TGs, 
as identified in set TGblbs. Therefore, the result of another possible set TFf-TFbs 
set is not included in this paper as the combination of TFf and TFbs. 

4 Conclusion 
A three step approach has been proposed to map a regulatory network from a 

model organism to a non-model organism. This includes mapping the transcription 
factors and the target genes separately and then integrating these regulatory elements 
to identify the regulatory relationships for the target genome. Rules are established to 
evaluate the predicted regulatory links using gene expression data of the target 
genome. 

Results are obtained in the transcription factor mapping step based on three 
techniques, using BLAST, using BLAST with protein family classification and using 
BLAST with protein subfamily classification. Results show that the technique based 
on sequence similarity and protein family classification maps transcription factors 
most efficiently from S. cerevisiae to A. thaliana; therefore, it is the preferred method 
for general transcription factor mapping.  

There are three techniques used for target gene mapping, based on sequence 
similarity, TFBS motifs, and sequence similarity along with TFBS motifs. Most of 
the target genes are identified correctly for A. thaliana by using TFBS motifs only. 
This method has better results with many more true positives than using only 
sequence similarity and than using sequence similarity with TFBS motifs. Same set 
of target genes are predicted using sequence similarity and using sequence similarity 
along with TFBS motifs. Therefore, the method using TFBS motifs only is the 
preferred method for general target gene mapping.  

Three sets of regulatory links are obtained in the regulatory elements integration 
step. The first set combines the mapped transcription factors based on sequence 
similarity and protein family classification with the target genes based on sequence 
similarity and TFBS motifs. The second set combines the mapped transcription 
factors based on sequence similarity and protein subfamily classification with the 
target genes based on sequence similarity and TFBS motifs. The mapped 
transcription factors based on sequence similarity and protein family classification 
are integrated with the target genes based on TFBS motifs in the third set. In the 
results, the large amount of target genes identified using the preferred method for 
target gene mapping produce many false regulatory links, since, while they are target 
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genes, they are not linked to the correct transcription factor. Additionally, the 
transcription factors from the preferred method of transcription factor mapping also 
contribute to many false regulatory links when used in the regulatory elements 
integration step.   

Hence, the predicted regulatory links obtained by integrating the mapped 
transcription factors based on sequence similarity and protein sub-family 
classification and mapped target genes based on sequence similarity and TFBS 
motifs contain the most regulatory links for the target genome that are verified by the 
gene expression data. This implies that more correctly mapped target genes, that link 
to the right transcription factor, are determined by using BLAST along with the TFBS 
motifs. Also, the correctly mapped transcription factors are obtained using the 
method based on sequence similarity and protein sub-family classification. This 
suggests that regulatory relationships are conserved between different genomes and 
can be mapped between them. Therefore, for a newly sequenced organism, a related 
model organism can be used to determine some regulatory information for the lesser 
explored organism. 

More biological and regulatory information can be integrated further into the 
regulatory network mapping method as more data becomes available for non-model 
organisms. Furthermore, additional information about gene regulation at different 
stages of gene expression can be incorporated as well. 
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