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Abstract There are multiple probesets that correspond to a gene in Affymetrix GeneChip plat-
form. Different combination and annotation methods will lead to different results of expression
when we transform the information from probesets to genes. In this work, we collected seven
methods to interpret the multiple probesets for representing a gene. We compared these methods
and identified their effects on the identification of differential genes. Specifically, we focused on
the analysis of differential genes between iPS cells and ES cells. We identified their differences
by calculating the t-test p-values and Pearson correlation coefficients. Our results show that gene
expression by different methods of combining the multiple probesets results in slight differences
of differential genes in iPS cells. We also identified the effects on coexpression in key transcrip-
tion factors of iPS cells. The results indicate that adopting different methods to handle multiple
probesets is important for accurate estimation of gene expressions.
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1 Introduction
The advent of microarray technology has made it possible to monitor the gene expres-

sion levels in parallel. Microarray has been extensively used in biomedical research to
address a wide variety of questions [10]. Affymetrix microarrays is one of the widely-
used platforms to measure the global expression of mRNA transcripts. This technology
is based on a concept of probeset. Individual probes within a probeset are originally de-
signed to hybridize with the same unique mRNA transcript [8]. In the design of genes in
Affymetrix GeneChip, gene expression is measured by extracting mRNA from the cells or
interested tissues and hybridizing mRNA samples to the 25-mer probes on the microarray
[12]. A GeneChip consists of a quartz wafer to which are attached some 500,000 different
25-mer deoxyoligonucletides, which are known as probes. Each expressed transcript is
represented on an array by a series of probe pairs known as a probe set [6, 8, 7, 12]. In
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the Affymetrix GeneChip, each probeset is defined by 11 pairs of probes. Often, there
are multiple probesets which correspond to a single gene. There are results which indi-
cate that some probesets should not be considered as unique measures of transcription,
because the individual probes map to more than one transcript dependent upon the bio-
logical condition [12]. About half of genes, each gene is defined by one probeset on the
chip. The other half genes are defined by two or more probesets [12]. It is important to in-
terpret the information of the probesets to the gene expression. There are various methods
which have been used to meet this task [6, 4, 5, 14]. The effect of multiple probesets for
describing the gene expression will be represented by these various interpretation meth-
ods [10]. Generally, the aim of most gene expression microarray experiments is to obtain
a list of genes which are differentially expressed under certain condition [8]. For the
cases of multiple probesets representing the same gene, gene differential expression and
coexpression will be determined by various methods to combine the values of multiple
probesets. This will significantly affect the final results. Dai et al. [2] have reported that
the updated definition can cause as much as 30–50 % discrepancy in the genes selected as
differentially expressed on a heart tissue expression profiling dataset.

Induced pluripotent stem (iPS) cells were first produced in 2006 from mouse cells
[13] and in 2007 from human cells [15]. This has been cited as an important advancement
in stem cell research, as it may allow researchers to obtain pluripotent stem cells which
are important in research and potentially have therapeutic uses, without the controversial
use of embryos [1, 9]. iPS cells are believed to be identical to natural pluripotent stem
cells, such as embryonic stem (ES) cells, in many respects, i.e. the expression of certain
stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid
body formation, teratoma formation, viable chimera formation, and potency and differen-
tiability [13, 15, 1]. However, the full extent of their relation to natural pluripotent stem
cells is still being assessed. iPS cell is so important and it is the breakthrough technique in
pluripotent stem cell. In the research of relationship of iPS and ES cells, gene expression
is a promising way to identify their expression profiling and features [1]. In the analysis
of the similarity and difference between ES cells and iPS cells, it will be important to
develop effective methods to interpret the gene with multiple probesets.

In this work, we propose a comparison study of the methods to interpret the multiple
probesets in Affymetrix GeneChips. We compare seven methods to identify the differ-
ential expression and coexpression information in those genes corresponding to multiple
probesets. The interpretation focuses on identifying the important differential genes in
iPS cells. The different and common differential mapping of some transcription factors
as well as their related genes are also investigated. The effects of multiple probesets
are performed and evaluated in determining the gene expression. The gene expression
features underlying the iPS cells are then presented. Our results provides important infor-
mation and highlight the need of careful consideration when assessing whether groups of
probesets are used to measure the same transcript.

2 Results
2.1 Effect on differential gene expression

The comparison of gene expression between iPS cells and ES cells was implemented
by Affymetrix HT Mouse Genome 430A Array [11]. There are 15706 unique genes which
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are assessed in the array, and 6219 (40%) genes are represented by multiple probesets. In
microarray study, differentially expressed genes between two cases are often regarded
to be associated with mechanisms behind the phenotype differences. There are many
methods for detecting differential genes. Among them the t-test is one of the widely
used methods. We used the t-test to detect the differentially expressed genes between
iPS cells and ES cells. We implemented the seven methods, i.e. ‘Average’, ‘Summary’,
‘Random’, ‘Mean’, ‘Variance’, ‘Correlation’ and ‘Entropy’ (see Methods), to define the
gene expression from these multiple probesets individually. Table 1 lists the number of
the identified differential genes. We selected significantly differential genes by different
p-values cutoffs of 0.005, 0.01 and 0.05.

Table 1: Number of differentially expressed genes in iPS cells by different methods to
represent the expressions of the genes with multiple probesets.

Threshold Average Summary Random Mean Variance Correlation Entropy
0.005 176 176 156 166 159 160 154
0.01 290 290 270 281 272 280 273
0.05 1081 1081 1008 1041 1010 994 987

From the total number of genes, we found that there is sight effect on the number of
differential genes in the identification. In the genes represented by multiple probesets,
Figure 1 shows the boxplot of the p-values of these genes. The p-values of these genes
with multiple probesets transforming by the ‘Random’, ‘Mean’ and ‘Entropy’ methods
will lead to slightly higher values than those of the other methods. In the genes with
repeated probesets, we also calculated the overlapping differential genes detected by the
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Figure 1: Box plots of differential p-values of the multiple probesets gene by the seven
methods.

seven methods. Table 2 shows the numbers of the overlapped differential genes. To assess
the statistical significance of these differential gene overlapped between two methods, we
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used the hypergeometric probability to calculate the significance [1]. In Table 2, the
diagonal part are the number of differential genes in these genes with multiple probesets
by p-value 0.05. From the statistical significance, the high conservation of these genes
in Table 2 provides more evidence for the slight effect of these multiple probesets by
identifying differential genes in iPS cells with different mapping methods. There are
different number of genes which are identified as differential genes by different methods.
The ‘Average’ method identified more differential genes than the ‘Entropy’ method (about
100 genes). The result indicates that we should pay attention to these different methods
when we used them to identify differential genes in those with multiple probesets. We
will carefully analyze some genes which identified to be differential by one method while
no significance by another method.

Table 2: Overlapping differential genes with multiple probesets identified by different
methods in iPS cells. Diagonal values are the numbers of identification by threshold p-
value of 0.05. Upper diagonal values are the overlapped numbers and lower diagonal
values are their corresponding significance.

Method Average Summary Random Mean Variance Correlation Entropy
Average 472 472 211 201 207 212 236
Summary 0.00e-000 472 211 201 207 212 236
Random 4.82e-145 5.32e-197 399 238 213 236 210
Mean 8.87e-123 1.64e-167 2.50e-180 432 228 253 170
Variance 5.47e-139 8.66e-211 2.40e-228 8.82e-057 401 122 264
Correlation 7.15e-151 2.43e-170 6.44e-106 9.32e-262 3.36e-162 385 202
Entropy 1.45e-189 4.82e-145 8.87e-123 5.47e-139 1.18e-176 1.45e-189 378

2.2 Effect on gene Coexpression
We also identified the effects on gene coexpression profiles in iPS cells. To explore the

relationship among these key transcriptional factors (TFs) of iPS cells, such as Pou5f1,
Sox2, Klf4, c-Myc, Nanog and Lin28, which can be achieved by overexpression of these
TFs by direct reprogramming of somatic cells, we collected such 13 TFs from literatures
[1, 13, 15]. We identified the gene correlations for deciphering their relationships with
the other genes and identifying the effect of different methods to represent the expression
of genes with multiple probesets. For simplicity, we considered the 900 differential genes
with multiple probesets in the former section identified by at least one method. Figure 2
shows the boxplots of the correlation value between these TFs and differential expressed
genes. From Figure 2, we identified the correlations of the differential genes with the
TFs. There are few differences in these correlations which are detected from the gene ex-
pression transformed from the probesets by different methods. ‘Random’, ‘Variance’ and
‘Entropy’ methods lead to slightly smaller correlation values than that of other methods.

We also identified the differences underlying the weighted gene coexpression net-
works. We used the correlation test to identify the significant correlations between the
TFs by a threshold of p-value 0.05. The correlations between these transcription factors
are measured by the same scheme. Figure 3 shows the dynamics of these constructed
gene coexpression networks in these genes by the seven methods. In the TFs’ coexpres-
sion networks, there are 5 genes which are represented by multiple probesets. Most of
the significant correlation are identified by ‘All’ the methods. By different methods, there
are slight differences of these correlations. For instance, the correlation between ‘Lin28’
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Figure 2: Box plots of correlation values between some transcriptional factors and differ-
ential genes by different methods to interpret the multiple probesets.

and ‘Nanog’ are significant by the methods ‘Random’, ‘Correlation’ and ‘Entropy’. From
the effects on the gene coexpression of these key TFs in iPS cells, we can find that there
are certain effects of these multiple probesets in decision of their gene coexpressions by
different methods.
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Figure 3: Gene coexpression networks constructed by the significant correlation between
the TFs by different methods.
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2.3 Effect of multiple probesets on expression profiles in iPS cells
We analyzed the effects of multiple probesets to identify the differential genes from

Affymetrix GeneChips in iPS cells. There are slight differences in the results from the
different methods. We have tested seven methods to interpret the information of multiple
probesets to genes. In the dataset, there are generally weak effects on the global perfor-
mance about the whole chip. However, when we focus on a specific expression profile of
individual genes, there are certain effects. There are some genes whose profiles are sig-
nificantly affected by the methods to transform the multiple probesets to genes. Figure 4
(a) shows different p-values of some genes from the expressions by the different methods.
The profiles of some genes, such as ‘Atg5’ and ‘Tapppc4’, are significantly affected by
these methods. Figure 4 (b) is the p-values of the known TFs. There are 5 genes with
multiple probesets in these TFs, which are slightly affected by different methods.
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Figure 4: Differential p-values of some genes. (a) 9 randomly selected genes. (b) the
known TFs.

For the seven methods, Figure 5 shows the hierarchical clustering of these methods
based on their distances of p-values of gene differential expressions. From the similarity
between these methods of ‘Average’ and ‘Summary’, we can recognize that their effects
are identical in identifying differential genes. ‘Correlation’ method is also very close to
‘Mean’ method. This indicates that the probeset with maximum correlation with oth-
ers are close to the probeset with maximum mean value. The similarity and difference
between these methods are presented in the figure.

For analyzing the GO enrichment, we also identified the difference of functional en-
richments of these differential genes detected by different methods. Table 3 lists the
enriched GO terms by the seven methods. From the significant GO (p-value of hyperge-
ometric test p-value threshold of 10−3, level threshold of 4), we can identify the special
features of functional enrichments in iPS cells with comparison with ES cells. We identi-
fied these enriched biology process (‘BP’), molecular function (‘MF’) and cellular com-
ponent (‘CC’) in every differential gene sets detected by the methods respectively. We
found that the effect on the decision of functional enrichment in differential genes will be
obvious in the analysis. By the thresholds, there are no significant GO terms in the gene
sets of ‘Correlation’ method. In Table 3, the differential genes related to ‘mitochondrion’
are differential expressed as well as some regulation processes of metabolism.
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Figure 5: Hierarchical clustering of these methods to interpret multiple probesets.

Table 3: GO enrichments in differential genes identified by the seven methods.
Method Term P-value Ontology Description

Average/Summary

GO:0005634 1.67E-08 CC nucleus
GO:0048522 4.81E-07 BP positive regulation of cellular process
GO:0080090 6.86E-07 BP regulation of primary metabolic process
GO:0051246 8.04E-06 BP regulation of protein metabolic process
GO:0060255 9.77E-06 BP regulation of macromolecule metabolic process
GO:0009893 1.96E-05 BP positive regulation of metabolic process
GO:0031625 2.79E-05 MF ubiquitin protein ligase binding

Random GO:0005739 1.72E-06 CC mitochondrion
Mean GO:0005739 2.06E-05 CC mitochondrion

Variance

GO:0048522 1.41E-06 BP positive regulation of cellular process
GO:0009893 5.21E-06 BP positive regulation of metabolic process
GO:0031325 1.65E-05 BP positive regulation of cellular metabolic process
GO:0010646 2.70E-05 BP regulation of cell communication

Entropy GO:0048522 2.91E-05 BP positive regulation of cellular process
GO:0005739 3.97E-06 CC mitochondrion

3 Conclusion
In this work, we presented a comparison study of seven methods for transforming the

information of multiple probesets into gene expression. We found that the global effects
on the analysis of differential expression and coexpression are minor. However, the meth-
ods for interpreting these multiple probesets to gene level of specific genes significantly
affect the results in iPS cells. This implies that it is crucial to assess the expressions of
the selected genes when they have multiple probesets. The available methods to handle
the multiple probesets were summarized. The results also suggest the importance to in-
terpret the multiple probesets to gene expression which provides more information about
the gene expression when we implement these different methods.

4 Methods
4.1 Data sources

We used the data of gene expression profiling research on iPS cells and ES cells [11].
The gene expression datasets were downloaded from NCBI Gene Expression Omnibus
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(GEO, http://www.ncbi.nlm.nih.gov/geo/) database (ID:GSE20576). The 4 samples of
ES cell and first 8 samples of iPS cell were transformed to absolute expression value by
RMA algorithm in R Bioconductor. Probesets were mapped to NCBI entrez genes using
DAVID [3]. The expression data contained 22716 probes and resulted in 15706 genes.

4.2 Multiple probesets
There are 6219 genes which correspond to multiple probesets. If there are multiple

probesets corresponding to the same genes, we will use the following methods to decipher
the expression individually from probe level to gene level.

• Average: In many papers of gene expression analysis, when there are multiple
probesets corresponding to a gene. These probesets are averaged to represent the
gene expression.

• Summary: We also can summarize the probesets corresponding to one gene to-
gether to represent the gene expression.

• Random: An alternative method is to randomly choose one of these probesets and
use the selected one as the representation of the gene expression.

• Mean: We can choose the probesets with maximum mean value as the gene expres-
sion.

• Variance: The variance indicates the dynamics of the expression in the whole list of
gene expressions. We can choose the one that corresponds to that with maximum
variance in these multiple probesets.

• Correlation: We calculate the correlation value of one probeset with the others and
then summarize these correlations. The one with largest summary of correlation is
interpreted as the gene expression.

• Entropy: We identify the probeset with maximum entropy in these candidates. The
entropy is defined as E =−∑i pilog2 pi, where pi is the percentage of the expression
in all the samples.

4.3 Detecting differential expression and coexpression
After we fixed the expression profiling for each gene, we identified the differentially

expressed p-values by comparing the gene expressions of iPS cells with those of ES cells
by Welch’s two-tailed t-test. We identified the differential information of gene expressions
from the seven methods respectively. The gene coexpression information in iPS cells was
calculated by Pearson correlation coefficient (PCC). We also calculated the PCC value of
pairwise genes in the seven generated gene expressions.

4.4 Deciphering the effects of multiple probesets
To detect the effects of multiple probesets, we identified the effects of these multiple

probesets by applying different methods to transform the probeset information to genes.
Firstly, we compared these differential p-values by different methods. Then we com-
pared the different correlation coefficient values with the 13 known transcriptional factors
related pluripotent cells listed in literatures [13, 15, 1, 9].
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