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Abstract A major challenge in systems biology is to make and analyze models of 

signaling networks. Here, we suggest the use of switching Boolean networks using 
threshold Boolean networks; we made a model of the acute myeloid leukemia (AML) 
signaling network and analyzed this network to find the component that makes the 
signaling network abnormal by being deregulated. Acute myeloid leukemia (AML) is 
characterized by the rapid growth of abnormal white blood cells, which accumulate 
in the patient’s bone marrow and perturb the production of normal blood cells. We 
constructed a model of the AML signaling network by combining the signaling 
pathways involved in either myeloid differentiation or cell proliferation. We then 
analyzed this signaling network using switching Boolean networks. Some of the 
components found in by this simulation had been previously experimentally 
validated by other researchers; however, we also discovered some new components 
through our technique. 
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1 Introduction 
Developing technologies such as DNA microarrays, high-throughput genome 

sequencing and other high throughput technologies have led to a rapid increase in the 
amount of biological experiment data that is available. The information generated by 
these methods exceeds the human capacity for analysis and requires computational 
power to integrate information in high throughput data. Due to the large amounts of 
biological data available, researchers have started to combine the data in order to 
understand biology at the systems level. Systems biology aims to understand 
biological processes and cellular functions through the modeling and simulation of 
biological systems [1].  

There are many formalisms for modeling of biological systems [2]. Of these, 
qualitative modeling has many advantages. The advantages are that it only needs 
topological information such as interactions between substrates of model systems, 
and it can be used even with incomplete knowledge of a system.  

Qualitative modeling has successfully modeled many different biological 
systems. For instance, one study robustly modeled the yeast cell cycle using  
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threshold Boolean networks with a synchronous update [3]. However, they did not 
examine differences in the speed of signal propagation. Another study found a key 
component in network modeling of survival signaling in large granular lymphocyte 
leukemia [4]. They constructed a T-LGL signal network and used a Boolean model 
for the networks’ dynamics. They reproduced the signaling abnormalities and 
predicted a key mediator in the signaling network. However, they did not represent 
protein self-degradation. In both studies, Boolean networks were used to model 
biological systems.  

Boolean networks are widely used to model regulatory and signaling networks 
because of their straightforwardness, robustness and compatibility with qualitative 
data. However, it is hard to specify the output of all of the combinations of input 
nodes because of limited information. To overcome this limitation of Boolean 
networks, threshold Boolean networks are made. Threshold Boolean networks are a 
subset of Boolean networks that have a Boolean function for each node that 
depends only on the sum of its input signals. 

Threshold Boolean networks also have limitations. This modeling technique 
relies completely on network information. Therefore, if a network is incomplete 
there will be gaps between the biological reality and the model’s output, resulting in 
a modeling anomaly. Another limitation is the synchronous update algorithm. It 
cannot measure differences in the speed of signal propagation. In biological systems, 
no two cells have exactly the same properties, resulting in differences in signal 
propagation between cells. Therefore, synchronous update algorithms are not proper 
for simulating biological systems.  

In this study, we make a simulation model which is called switching Boolean 
networks. This model overcomes the limitations of threshold Boolean networks, 
which are model anomalies and the use of the synchronous update algorithm. We 
found the essential components in an AML signal network with it and suggest it as 
an improved modeling technique for biological data. 

2 Switching Boolean Networks 
To overcome modeling anomaly and synchronous update problem, we modified 

threshold Boolean networks. 

2.1 Switching Boolean Networks 
In Biology, interactions between proteins occur at different times and a dynamic 

model would involve various binding constants and binding rates. However, 
biological signaling networks seemed to be reflected by the on/off characteristics of 
nodes in a network. Here, we use a simplified dynamic network, as we want to see a 
whole picture of the signaling network of biology rather than an extremely detailed 
view. 

Network nodes represent proteins or cellular functions, such as differentiation, 
proliferation and apoptosis. Each node in a signaling network has only two states, Si 
= 1 or Si = 0, which represent an active or inactive state of the node, respectively. The 
biological meaning is that the protein is either active or not due to different 
biochemical mechanisms such as gene expression or post-translational modifications 
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such as phosphorylation, which determine if a protein is active. The active state 
means that a small molecule is produced, a transcript is produced and translated, or a 
protein or cellular function is activated. The inactive state indicates the absence of a 
small molecule or transcript or that a protein or cellular function is inhibited.[4] The 
state of the node in the next time step is determined by the states of source nodes in 
the present time step by the application of the following rule: 

Si(t + 1) =  
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⎪
⎪
⎨

⎪
⎪
⎧ 1,�aijSj(t)
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j
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where aij(t) = aa for an activator edge from node j to node i and aij(t) = ah for an 
inhibitor edge from node j to node i.[3] In principal, when an inhibitor protein for the 
target protein is active, the state of the target protein becomes inactive, even if the  
activator protein for the same target is active [5]. To meet this biological principal, 
we assigned a weight of 1 to the protein activator edge and the weight of the protein 
inhibitor edge is –�∑ aaj + 1j �. However, the action of a cellular function node is 
different than that of a protein node in a signaling network. There is no physical 
interaction between a protein and its cellular function. To model cellular functions 
with switching Boolean networks, we applied different edge weights for source 
nodes of a cellular function node (e.g., proliferation, differentiation and apoptosis) 
according to the protein’s function in these nodes. θi is the activation threshold of 
node i, which is set to 0 for all nodes. Because of the incomplete data for the 
biological network, there are nodes that have no activator and inhibitor nodes. To 
overcome these model anomalies, we inserted an external activator or inhibitor 
node for nodes that have no activator or inhibitor node, respectively. The state of an 
external node is randomly assigned to model differences between cells. We use a 
random-order asynchronous updating algorithm to model differences in the speed of 
signal propagation in cells. Multiple replicated simulations are performed. 
Degradation of a protein is modeled by turning the state of the protein to off 
randomly. 

2.2 Acute Myeloid Leukemia 
Acute Myeloid Leukemia (AML) is characterized by the rapid growth of 

abnormal white blood cells, which are granulocyte or monocyte precursors that 
accumulate in the bone marrow and blood. These cells interfere with the production 
of normal blood cells by causing problems with differentiation and proliferation [6]. 
There are three possible genetic mechanisms that could cause the block in 
differentiation [6]. One possibility is that a disruption of cell-cycle control could 
block differentiation. Another possibility is secondary events in carcinogenesis. The 
last one is that the disruption of certain gene products affects both the cell cycle and 
the differentiation of the blood cells. Recent evidence suggests that the third 
proposed genetic mechanism is important for AML. Therefore, it is important to 

170 The 4th International Conference on Computational Systems Biology



 

 

find the gene products that can effect proliferation or the differentiation of these 
cells in order to overcome AML. Here is our strategy for identifying the essential 
components of AML. First, we made an AML signaling network using data 
extracted from the literature. Second, we simulated the AML signaling network 
using switching Boolean networks. 

Fourth, we identified possible causes of network abnormalities. Finally, we 
identified the essential components of AML. To make the AML signaling network, 
we first constructed a general granulopoiesis network from the literature. We 
regarded a normal granulopoiesis network as a framework for an AML signaling 
network. We will refer to this network as the “original network”. The Original 
network has a source (upstream regulator) node, a target (downstream regulator) 
node and interactions between the source node and the target node. The biological 
meaning of these interactions is to “promote”, “activate” or “inhibit”. To understand 
the effect of altered granulopoiesis conditions on normal cell differentiation and 
proliferation, we augmented the nodes in the original network, which is known 
deregulated in AML. To simplify the original network, we did two things. First, we 
removed unconnected nodes in the original network, which will not affect the 
simulation results. Second, if there are two relationships such that A inhibits C, A 
inhibits B, and B activates C, we removed the B node in the original network. After 
constructing the AML signaling network, we simulated this network using 
switching Boolean networks.  

2.3 Simulation 
In the biological system, there is a different time scale between the state change 

from the regulators and the state change of the regulators’ targets. The enzyme 
propagation time is rarely known from experiments. Thus, we used an asynchronous 
updating algorithm that simulates the different signal propagation speeds [4]. To 
equally simulate all possible timescales, a random-order asynchronous algorithm was 
used. In this algorithm, the time step is a round of updating, during which all nodes 
are updated in a randomly selected order [4]. The updating scheme of an 
asynchronous algorithm is written as rule (1). To reproduce how a group of cells 
responds to the same initial signal and to simulate variability among cells, we 
performed multiple simulations with same initial conditions but different updating 
orders. The state of the receptors (G-CSF, GM-CSF and TGFβ) was set to active at 
the beginning of every simulation. The frequency of the activate state of a node 
during a simulation is quantified by: 

Fit = �
Sit(j)

N

N

j=1

     (2) 

 Fit stands for the frequency of the active state of node i at time step t; N is total 
number of simulations, and Sit(j) is the status of node i at time step t in the jth 
simulation.  

To reveal possible causes of network abnormalities, we turned on or off every 
node in each simulation.  
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Figure 1. Algorithm of Switching Boolean Networks 

 
Figure 2. AML signaling network with 61 nodes and 107 edges. 
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3 Results and discussion 
3.1 Performance comparison 

To verify the simulation performance of switching Boolean networks, we 
compared it to synchronous threshold Boolean networks. In this test, we turned off 
known drug targets of AML such as C/EBPα, AML1 and PU.1. 
 
Figure 3 a) Synchronous threshold Boolean networks b) Switching Boolean 
networks 
a)

 

b) 

 
 

3.2 Switching a single node off 

Table 1 Simulation results from switching a single node off in an AML signaling 
network. 
Nodes that down-regulate differentiation Nodes that affect up-regulate          

differentiation 
Validated proteins Validated proteins 

AML1 STAT1 PTEN P21 
ERK1/2 c-Jun P27 C/EBPα 
P27 Bcl-XL Candidate proteins 
JAK3 C/EBPε SMAD7 PKC 
C/EBPα SMAD7 STAT1 P38MAPK 
PU.1 PTEN  
p21 p53 
p38MAPK Rac1 

Candidate proteins 
PKC MKK4/7 
TGFb AST1 
G-CSF STAT5 
JNK  

 
In the case of nodes that down-regulate differentiation by being turned off, 

AML1-ETO down-regulates granulocyte differentiation.[7] STAT1 inhibits 
monocyte differentiation.[8] An example of a node that promotes proliferation by 
being turned off is C/EBPα. The loss of C/EBPα cell cycle control increases 
myeloid progenitor proliferation.[9] These results also give us candidate proteins 
that could make inhibit cell differentiation or promote proliferation. 
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3.3 Switching a single node on 
In the case of nodes that down-regulate differentiation by being switched on, the 

overexpression of PDK1 was found to be a common feature of acute myeloid 
leukemia [10]. In the case of nodes that promote proliferation by being switched on, 
overexpression of c-Jun in AML cells was able to induce proliferation [11]. These 
results also give us candidate proteins that can inhibit cell differentiation or induce 
proliferation.  

 
Table 2 Simulation results from switching a single node on in the AML signaling 
network. 
Nodes that down-regulate differentiation Nodes that affect up-regulate          

differentiation 
Validated proteins Validated proteins 
GATA-1 c-Myc c-Myc Ras 
Cdk6 Akt STAT5 Akt 
SOCS1 STAT5 Cdk6 c-Jun 
JAK2 PDK1/2 JAK2 Cdk4 
Pim-1 Ras IKK FLT3 
IKK  Pim-1 PI3K 
Candidate proteins STAT3 ERK1/2 
P27 SMAD2/3 Mdm2 Raf 
SMAD4 Mdm2 Candidate proteins 
 SMAD2/3 SMAD4 

Bcl-XL PDK1/2 
Sos Grb2 

4 Conclusion 
Boolean networks are one type of discrete dynamic modeling method. It is 

straightforward, robust and compatible with qualitative data. Our proposed method 
can overcome modeling anomalies and differences in the speed of signal 
propagation in the network.  

We simulated an AML signal network to find essential components that could 
cause AML using switching Boolean networks. Our results found that, for the 
simulation that switched a single node off, 75% of the proteins which is affected the 
differentiation block and 55% of the proteins which is affected hyperproliferation are 
found at literatures; for the simulation that switched a single node on, 75% of the 
proteins which is affected the differentiation block and 54% of the proteins which is 
affected hyperproliferation are found at literatures.  

We were able to predict essential components that could be key mediators of the 
AML signal network. 

 We suspect that some of these predicted essential components could be 
candidate targets for AML drugs. 
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