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Abstract Solvent accessible surface area (SASA) is an important descriptor of protein residues
and atoms. It is widely used as an outstanding feature in hot spot prediction by many computational
methods. However, SASA is not capable of distinguishing slightly buried residues, of which most
are non hot spots, and deeply buried ones that are usually inside a hot spot. In this work, we
propose a new descriptor for residues, atoms and for atomic contacts, namely “burial level”, which
can capture the depth the residues are buried. We identified the number of different kinds of the
deeply buried atomic contacts at different burial level that are directly broken in alanine substitution,
and we used these values as input for SVM to classify between hot spot or non hot spot residues.
We got an F measure of 0.6237 under the leave-one-out cross-validation on a data set containing
258 mutations. This performance is better than other computational methods.
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1 Introduction
Protein-protein interactions which play a key role in life are generally dominated

by hydrogen bonds, salt bridges and hydrophobic contacts across the interface [18, 20].
These local interactions have to be desolvated, densely packed and hence deeply buried
to make contribution to the binding free energy [40, 34, 14, 32]. This is why the energet-
ically important hot spot residues in the interface tend to cluster into local regions with
low solvent accessible surface area (SASA) values [3, 19].

Identifying these energetically important residues, which can offer useful information
to protein engineering and better understanding on protein-protein interaction [28], is
usually done by site-directed alanine mutagenesis. This experimental method mutates the
target residue into alanine which only but still has a Cβ heavy atom on its side-chain [9,
38]. Residues whose mutation results in large binding free energy change (≥2.0 kcal/mol,
for example) are defined as hot spot residues [8].

Many feature-based [16, 11, 6, 36, 39] and energy-based [27,21, 22, 25] computa-
tional approaches have been proposed to address the hot spotprediction problem. Almost
all of these feature-based methods use the SASA informationof the residue as a critical
feature in the prediction. A low SASA is necessary for a residue to be a hot spot residue,
however, it is not sufficient as a large number of non hot spot residues also have low SASA
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values. Therefore, the SASA is not effective to tell the difference between slightly buried
residues, a large part of which are non hot spot residues, anddeeply buried residues that
are very likely to be hot spot residues.

In this work, we introduce a new descriptor for protein atomsand residues. It is named
burial level, a more informative concept than SASA. In the definition of burial level, the
buried immobilized water molecules are treated as an integral part of the protein complex.
We show that our definition of residue burial level is nicely correlated to∆∆G. A high
burial level is not only in general necessary for hot spot residues but also more sufficient
for them in comparison to SASA. In other words, most hot spot residues tend to have high
burial level while most non hot spot residues are exposed or just slightly buried. We also
define the burial level of atomic contacts and we calculate the number of three types of
buried interfacial atomic contacts that are directly broken when the residue is substituted
by alanine at different burial level. The number of those deeply buried atomic contacts
together with the burial level of the residue itself are further fed into SVM as features to
classify interfacial residues into hot spot residues or nonhot spot residues. By applying
our method to a data set of 258 mutations, we achieved an F measure of 0.6237 under
the hot spot definition of∆∆G≥2.0 kcal/mol, which is better than other computational
methods. We also conducted a detailed analysis of the features used in this work, and
we found that the hot spot residues tend to have significantlymore deeply buried atomic
contacts than non hot spot residues.

2 Materials and Methods
2.1 Data set

Our data set is collected by retrieving the experimental alanine mutagenesis data from
the alanine scanning energetics database (ASEdb) [35] and some previously published
works [10, 13, 7, 30, 31]. The requirement for the data is that: the 3D structure of the
wild-type protein complex is solved by X-ray crystallography and is reported in PDB [2],
and the solvent information is included in the PDB file. We do not consider protein-ligand
interaction or protein-peptide interaction in this work thus those interactions that do not
have an extended interface are excluded. The structural similarity of the complexes are
tested by the CE algorithm [33]. If the two chains of the two complexes have a significant
similarity at the same time, their binding interfaces are further checked to ensure that there
is no redundancy in the data set. Only the mutations in the interface are considered.

Our data set consists of 258 mutations distributed in 13 protein complexes. Hot spot
residues are usually defined by setting∆∆G≥1.0 kcal/mol or∆∆G≥2.0 kcal/mol. We
prefer to the second choice, as only a higher∆∆G threshold can reflect the direct influence
of the mutation. That is, the interfacial atomic contacts that are directly broken by the
mutation are taken into consideration. Some researchers even suggested that a residue
should have a∆∆G higher than 4.0 kcal/mol so as to have a strong impact on the binding
of the two proteins [28]. In practice, a lower value is taken to get enough data for statistical
analysis [28].
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Figure 1: Cross-section of a growth hormone and growth hormone receptor complex
(PDB id: 1A22) showing the burial level pattern. A layer of atoms in the front are shown
as spheres while those at the back are shown as sticks.

2.2 Feature generation
2.2.1 Burial level of atom, residue and atomic contact

Our definition of burial level is based on atomic contact graph. The atomic contact
graph of a protein complex is an undirected graph with heavy atoms as nodes and atomic
contact as edges. The atoms in this graph is labeled as exposed or buried according to
its SASA. If the SASA of an atom is not less than 10.0Å2, it is exposed, otherwise it is
buried. The SASA is calculated by the NACCESS software whichis based on the Lee
and Richards algorithm [23]. All theexposed water molecules, which we consider as part
of the bulk solvent, are removed in advance while the buried water molecules are kept as
a part of the complex, thus their oxygen atoms are a part of theatomic contact graph. The
atomic contact is defined by a distance threshold and the Voronoi diagram. Two atoms are
considered to be in contact if they have a distance less than their Van der Waals radius plus
the diameter of a water molecule (2.75Å) and they share a Voronoi facet. This distance
threshold is based on a water-free idea and it has been used in[24].

In an atomic contact graph, the burial level of an atom is defined as the length of the
shortest path from this atom to its nearest exposed atom. Forexample, the burial level
of exposed atoms is 0 and the burial level of their immediate buried neighbors is 1. We
calculate the burial levels by adding a pseudo node, which represents bulk solvent, to
the atomic graph. This node is connected to all of the exposednodes directly. Then the
burial level of any atom equals to the length of the shortest path from this atom to the
pseudo node minus 1. This is exactly the single-source-shortest-path problem and it can
be simply solved by using Dijkstra’s algorithm[12].

Figure 1 shows a burial level pattern inside a growth hormoneand growth hormone
receptor complex. As can be seen from the figure, atom burial level is indeed a good
indicator to describe the extent to which an atom is buried inside a protein or a protein
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complex. It is clear that the burial level of any two neighboring atoms can have a differ-
ence of at most 1. Because the complex is not perfectly global, it can be noted that burial
level 2 is “thicker” with more atoms.

The burial level of a residue is the average value of the burial levels of all atoms in
the residue. For an atomic contact, if the burial levels of the two atoms are the same, the
burial level of the atomic contact equals to the burial levelof the two atoms, otherwise it
equals to the smaller one of the two burial levels.

2.2.2 Directly broken atomic contact, atomic contact typesand features

When a residue is mutated into alanine, some interfacial atomic contact are directly
broken because of the removal of certain atoms; Some other interfacial atomic contacts
may also be broken or distorted due to the conformational change in the local region [31].
Given a residue, we just consider its directly broken interfacial atomic contacts, which
are the contacts that are made by atoms other thanC, N, O, Cα andCβ and their contact
partners are from the other chain.

We classify the atomic contacts into three types. If a contact is between a positively
charged atom and a negatively charged atom, which usually corresponds to a salt bridge,
it is called a Type I contact. If a contact is between a hydrogen bond donor and a hydrogen
bond acceptor, which usually is a hydrogen bond, it is classified as Type II contact. Con-
tacts that are neither Type I nor Type II are classified as TypeIII. Here, the definitions for
positively charged atoms, negatively charged atoms, hydrogen bond donors and hydrogen
bond acceptors are followed from those in [19]. We do not further divide the Type III
contacts into subtypes such as other polar contact, hydrophobic contact and so on because
they are all not that specific as Types I and II contact. Note that the definitions for Type I
and Type II contacts are not exactly the same as salt bridges and hydrogen bonds in terms
of the geometrical requirements, yet they can be still very important [29].

In this work, we use those deeply buried atomic contacts whose burial level is not
less than 2. We refer the atomic contacts at burial level 0 as exposed atomic contacts
and those at burial level 1 as slightly buried atomic contacts. LetC(i, j) denote the num-
ber of Typei directly broken interfacial atomic contacts at burial level j of a residue.
Then our model contains 6 features to describe a residue:C(I,≥ 2), C(II,2), C(II,≥ 3),
C(III,2), C(III,≥ 3) and the burial level of the residue. SVM model based on this fea-
ture set is named DBAC (DeeplyBuried Atomic Contacts). For comparison, we have
also built another model named AC (AtomicContacts) which is based on another feature
set containingC(I,0), C(I,1), C(I,≥ 2), C(II,0), C(II,1), C(II,2), C(II,≥ 3), C(III,0),
C(III,1), C(III,2), C(III,≥ 3) and the burial level of the residue. The maximum value of
burial level depends on the size of the protein complexes andthe size of the interfaces. In
general, very few contacts have burial level larger than 3, so we do not distinguish further
when the burial level are larger than 3. For Type I contact, there are very few cases that
have burial level larger than 2, thus we do not useC(I,≥ 3) as another feature but merge
it with C(I,2) into C(I,≥ 2).

2.3 Support Vector Machine training-testing protocol
Support Vector Machines (SVMs) are widely used in many classification and re-

gression problems. They have also been adopted in the hot spots prediction problems
[6, 39, 25] with various feature sets and training-testing protocols. In this work, we take
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the LIBSVM software [5] which is a tool for SVM model trainingand testing available
athttp://www.csie.ntu.edu.tw/~cjlin/libsvm. The kernel we used is the
radial basis function (RBF). We did not conduct feature selection because our method
is straightforward, and the number of features is not large.Meanwhile a feature selec-
tion on the whole data set will introduce over-fitting. However, we do have evaluated the
performance on two different feature sets: using the deeplyburied atomic contacts only
(DBAC) and using all the atomic contacts (AC), where the latter feature set is evaluated
just for comparison.

The performance is evaluated under the leave-one-out cross-validation. To avoid the
over-fitting, we have strictly followed a nested-loop cross-validation procedure. There
are 258 mutations in our data set, each time one mutation is taken as the test data and the
remaining 257 mutations are used to train the model. The two parameters, namely cost
and gamma, are optimized on the training data by a grid search. The grid search evaluates
the performance, F measure, of SVMs with different parameter values on the training data
under the 5-fold cross-validation, and the parameter values with the best performance are
chosen to build a training model on the training data. This training model is then applied
to the test data, that is, the mutation held out in advance. This procedure is repeated 258
times till every mutation in the data set is tested.

2.4 Metrics in performance evaluation and statistical analysis
The performance is measured by sensitivity, precision, specificity, accuracy and F

measure (F1) that are defined as follows:sensitivity = T P
T P+FN , precision = T P

T P+FP ,

speci f icity = T N
T N+FP , accuracy = T P+TN

T P+FP+TN+FN , andF1 = 2×sensitivity×precision
sensitivity+precision , where

TP, FP, TN and FN are the number of true positives, false positives, true negatives and
false negatives, respectively. A better classifier should predict the hot spot residues with
less false positives and less false negatives, thus the F measure which combines sensitivity
and specificity is used to indicate the overall performance.

We also test the significance of difference in∆∆G values of the predicted hot spot and
non hot spot residues. Basically, a classifier divides the mutations in the data set into two
groups: computational hot spot residues and computationalnon hot spot residues. The
significance of∆∆G value difference in this two groups are tested by Mann-Whitney test
[26]. The result of a classifier with higher F1 value can be less significant when its false
positives have very low∆∆G values (near 0 kcal/mol or even negative) and false negatives
have high∆∆G values.

We have also checked the value distribution of individual features in hot spot and
non hot spot residues. The significance of difference in the two classes is also tested by
Mann-Whitney test.

3 Results and Discussion
3.1 Performance of hot spot residue prediction

As introduced, 5 new features are derived from those deeply buried interfacial atomic
contacts which are directly broken by the alanine substitution. The feature values of a
residue are then fed into SVM together with the overall residue burial level to predict
whether this residue is a hot spot residue or not. The performance under the leave-one-
out cross-validation is shown in the second row of Table 1. Weachieved an F measure of
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Table 1: Performance of our method (DBAC) in comparison withusing all atomic contact
(AC) and Robetta

Method Sensitivity Precision Specificity Accuracy F1 p-value
DBAC 0.58 0.6744 0.9327 0.8643 0.6237 3.0280×10−12

AC 0.32 0.5333 0.9327 0.8140 0.4 1.2849×10−5

Robetta 0.44 0.3667 0.8173 0.7442 0.4 5.3817×10−8

Table 2: Comparison of our method with MINERVA
Method Sensitivity Precision Specificity Accuracy F1 p-value
DBAC 0.5833 0.7 0.9366 0.8652 0.6364 2.4011×10−9

MINERVA 0.5 0.6667 0.9366 0.8483 0.571 1.3731×10−7

0.6237, when∆∆G≥2.0 was used a threshold to define hot spot residues. The precision
of our method is higher than the recall, which means that there are fewer false positives
than false negatives. A reason for this is that our model emphasizes the contribution
of directly broken atomic contacts. The contacts that are broken or newly formed by the
conformational change during the mutation are hard to be defined quantitatively. The∆∆G
of some hot spot residues whose mutation may result in large conformational change,
cannot be fully explained by its directly broken atomic contacts. This is reflected in the
lower sensitivity value. The non hot spot residues, whose∆∆G is low, tend to have fewer
directly broken atomic contacts, leading to a smaller number of false positives and hence
a higher precision.

We have also evaluated the performance by using the AC feature set which takes those
exposed and slightly buried atomic contacts into consideration as well. The performance
is shown in the third row of Table 1. It can be noted that the performance is not improved
although the extra exposed and slightly buried atomic contacts are added to the feature
set; rather the F measure is driven down to 0.4 and the statistical significance is reduced a
lot as well. The reason will be presented later.

We have compared our method with Robetta [21, 22], a widely recognized gold stan-
dard for benchmark comparison in the field. Robetta server can predict the∆∆G value
of interfacial residues by computational alanine scanningbased on an energetic function.
Its performance on our data set is shown in the forth row of Table 1. Our performance is
remarkably better than that of Robetta in terms of both F1 andp-value.

We have also compared our method with another machine learning method, MIN-
ERVA [6], which uses SVM as well and is based on a larger feature set containing various
aspects of information of target residue such as weighted atomic packing density, relative
surface area burial, weighted hydrophobicity and so on. MINERVA has a good perfor-
mance in terms of the F1 value as reported in comparison with other previous machine-
learning methods. Because its source code and software are not available, we compare the
performance on the common data that is reported in the MINERVA paper and that is also
covered in our data set. This common data set contains 178 mutations with 36 hot spot
residues and 142 non hot spot residues. The comparative performances is shown in Table
2, from which it can be noted that MINERVA does not outperformour method in terms of
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Table 3: Statistical analysis on the features. The featuresin the feature set DBAC are
emphasized in italics.

Feature RBL∗ C(I, 0) C(I, 1) C(I, ≥2)
p-value 5.0897×10-10 0.2008 0.8204 0.0050
Feature C(II, 0) C(II,1) C(II, 2) C(II, ≥3)
p-value 0.0013 0.4133 1.2419×10-9 3.5031×10-6

Feature C(III, 0) C(III,1) C(III,2) C(III,≥3)
p-value 0.0034 0.0945 1.9061×10-16 1.1621×10-9

∗:residue burial level

F measure and p-value. Besides, MINERVA conducted a featureselection based on the
whole data set, which selects only 12 out of 54 features. Thisprocedure can introduce
much over-fitting to the performance. MINERVA also has been tested on an independent
data set derived from BID [15] where the importance of a residue is labeled as “strong”,
“intermediate”, “weak” or “insignificant”. As in MINERVA, aresidue is regarded as a
hot spot residue only when its label is “strong”. We have tested our model (trained on
our data set, 258 mutations) on a subset of this independent data set of which the corre-
sponding PDB files have the solvent information reported, containing 111 mutations. The
performance of our model in terms of F1 on this data set is 52%,same as that of MIN-
ERVA. Note that the label of of a residue is not perfectly correlated to its∆∆G, which is
an inconsistency between the training data and the test data, however it still can indicate
the contribution of a residue to the binding.

3.2 Feature analysis
We tested the significance of difference for the values of a feature in the hot spot and

non hot spot residues. These p-values are reported in Table 3. It is clear that the DBAC
features have very low p-values, indicating that their values are significantly different
between the two classes. The p-value ofC(I,≥ 2) is not as low as that of other DBAC
features, because residues that have salt bridges are fewer. The numbers of slightly buried
atomic contacts are not that significant as those of the deeply buried ones. Thus our feature
set can indeed reflect the contrast between hot spot residuesand non hot spot residues,
and the idea of excluding slightly buried and exposed atomiccontacts and instead using
deeply buried atomic contacts is statistically reasonable.

3.2.1 Residue burial level

Residue burial level is a very important feature to predict hot spot residues. Its p-value
shows the most significant difference between hot spot residues and non hot spot residues
as can be seen in Table 3. Here, we explain that residue buriallevel is more sufficient than
SASA in hot spot prediction.

Bogan and Thorn [3] found that the hot spot residues tend to have low SASA values.
Based on this observation, they suggested the existence of aring of energetically less
important residues that are responsible of protecting the hot spot. Generally a low SASA
value is a necessary condition for a residue to become a hot spot residue, thus it is usually
used someway in the hot spot prediction. For example, the HotSprint database [16] defines
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Figure 2: Distribution of the SASA values (a), and of the residue burial levels (b), in the
hot spot and non hot spot residues.
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Figure 3: Percentage of hot spot residues and non hot spot residues that have at least one
Type I (a), Type II (b) or Type III (c) directly broken interfacial atomic contact at different
burial level.

the computational hot spots as those conserved residues that have large SASA change in
complex formation and low SASA in the complex. However, a lowSASA value is not
a sufficient condition of hot spot. As observed in Figure 2(a), in our data set, the hot
spot residues tend to have low SASA values with more than 80% of the hot spot residues
having SASA less than 30 Å2. But the non hot spot residues also follow such a tendency
(55%) in a less remarkable yet observable way.

In contrast, as shown in Figure 2(b), the hot spot residues tend to have a high burial
level, while non hot spot residues do not. More than 60% of thehot spot residues have a
burial level no less than 2.0, whereas the non hot spot residues with such burial levels are
less than 20%. Thus, we can conjecture that a high burial level is not only necessary but
also more sufficient than a low SASA value for a hot spot residue.

3.2.2 Deeply buried atomic contacts

Type I atomic contacts roughly correspond to salt bridges. Some researchers believe
that buried salt bridges provide neutral or even negative contribution to protein stability [1,
37] because the desolvation of charged groups requires moreenergy than the interaction
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energy of the formation of the salt bridge [17]. But in protein-protein interaction, it is
found that interfacial salt bridges are more buried than intra-chain salt bridges, and the
salt bridges are found favorable across the interface [40].This may be the reason that
the two proteins are folded independently with more chargedresidues exposed and the
conformation change of them during the complex formation isvery restricted, thus the
two proteins prefer to interact in an electrostatic complementary manner.

Percentages of hot spot residues and non hot spot residues whoseC(I,x) are larger
than 0 are plotted in Figure 3(a). Generally the hot spot residues tend to have their salt
bridges buried while non hot spot residues do not. Two adjacent exposed oppositely
charged groups may not form stable salt bridges at all [34], thus some exposed Type I
contacts, most of which are possessed by non hot spot residues, may not be stable salt
bridges.

The hydrogen bonds indeed play a key role in protein-proteininteraction [20]. Most
interfacial hydrogen bonds are extremely buried and the more buried a hydrogen bond
donor/acceptor is, the more likely it is to form a hydrogen bond [40]. Thus being buried
is favorable for interfacial hydrogen bonds. Figure 3(b) shows the percentages of hot spot
residues and non hot spot residues whoseC(II,x) are larger than 0. It can be seen that
nearly 30% of the non hot spot residues have exposed Type II atomic contacts, but very
few of them have deeply buried hydrogen bonds. There are moreresidues have deeply
buried hydrogen bonds while a few of them have exposed hydrogen bonds. The number
of residues that have extremely buried (burial level≥ 3) atomic contacts is limited by the
size of the protein complexes.

Type III contacts contain all other kinds of contacts that are neither salt bridges nor
hydrogen bonds, including hydrophobic contacts and other polar contacts. Actually hy-
drophobic contacts are not specific contact between atoms but are the packing of groups of
hydrophobicside chains. The contribution of hydrophobiccontacts to bonding free energy
is correlated with the buried surface area [32]. Thus energetically important hydrophobic
contacts are those buried ones. Generally the protein-protein interface are dominated by
salt bridges, hydrogen bonds and hydrophobic contacts, butsometimes other contacts also
make contribution to the binding [40]. A hot spot is usually adensely packed region in
the interface, thus the number of buried contacts of a hot spot residue tend to be large,
which can be reflected by deeply buried Type III contacts. As shown in Figure 2(c), more
than 80% of the hot spot residues have Type III contact at burial level 2 and only about
20% non hot spot residues have Type III contact at this buriallevel.

3.3 Case study: two residues that are difficult to classify
Figure 4 shows the structure of two residues that are difficult to classify. ARG-17

of BPTI shown in Figure 4(a) is well buried in the interface ofthe complex with a very
low SASA of 8.0Å2, a small SASA value even not enough to define an exposed atom.
Argnines are actually very likely to be hot spot residues [3,28] especially when they have
such a low SASA. However, this ARG-17 is a non hot spot residue, having a∆∆G of only
0.5 kcal/mol. Its burial level is 1.55, which is not a high value and more importantly, we
found that almost all its atomic contacts with bovine chymotrypsin are just slightly buried
or even exposed. There are 4 Type II contacts as shown in the figure with 2 exposed and 2
slightly buried. It also has another 15 Type III contacts, with 13 slightly buried, 1 exposed
and 1 deeply buried. We successfully classified this residueas non hot spot residue.
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(a) (b)

Figure 4: Two residues that are mutated in our data set. (a) ARG-17 of BPTI (in yellow) in
bovine chymotrypsin (in green)-BPTI complex (PDB id: 1CBW). (b) TYR-29 of barstar
(in yellow) in barnase (in green)-barstar complex (PDB id: 1BRS).

Another example as shown in Figure 4(b) is TYR-29 of barstar.This residue is ex-
posed with an SASA of 67.11Å2, however it is a hot spot residue with a∆∆G of 3.4
kcal/mol. There are only two hot spot residues that have an SASA larger than 60Å2 in
our data set. We can still successfully identify it as a hot spot residue by using its deeply
buried atomic contacts. The side-chain of tyrosine which contains an aromatic ring and
a hydroxyl group is capable of forming aromaticπ-interactions and hydrogen bonds [3].
As can be seen from the figure, although TYR-29 of barstar is partially exposed, its side-
chain stretches into the complex and forms many deeply buried atomic contacts. For the
4 Type II interfacial atomic contacts shown in the figure, 3 are deeply buried and 1 is
slightly buried. There are another 8 deeply buried Type III contacts, of which 7 are made
by the aromatic ring and 5 are atomic contacts with HIS-102, an active site residue of
barnase [4].

4 Conclusion
We have proposed a feature-based method to predict protein-binding hot spots by

using the deeply buried interfacial atomic contacts that are directly broken during ala-
nine substitution. The method is based on a graph theoretical definition of burial level
of residues, atoms and atomic contacts. We achieved an F measure of 0.6237 when
∆∆G≥2.0 is used as the threshold to define hot spot residues.

The burial level of a residue is more intuitive than the concept of SASA, and it is nicely
correlated with the∆∆G of a residue. We have shown that a high residue burial level is
in general necessary for a residue to be a hot spot residue. And more importantly, it is
more sufficient than SASA that is frequently used in hot spot prediction. Our results also
reveal that the hot spot residues tend to have deeply buried atomic contacts while the non
hot spots tend to have exposed and slightly buried ones. Thisis consistent with previous
studies that emphasize the energetic contribution of buried salt bridges, hydrogen bonds
and hydrophobic contacts.
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