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Abstract Solvent accessible surface area (SASA) is an importantigéscof protein residues

and atoms. Itis widely used as an outstanding feature indoi@ediction by many computational
methods. However, SASA is not capable of distinguishingtsly buried residues, of which most
are non hot spots, and deeply buried ones that are usuaitieiashot spot. In this work, we

propose a new descriptor for residues, atoms and for atamni@cts, namely “burial level”, which

can capture the depth the residues are buried. We identifeedumber of different kinds of the
deeply buried atomic contacts at different burial levet #iva directly broken in alanine substitution,
and we used these values as input for SVM to classify betweesgot or non hot spot residues.
We got an F measure of 0.6237 under the leave-one-out cedisiion on a data set containing
258 mutations. This performance is better than other coatioual methods.
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1 Introduction

Protein-protein interactions which play a key role in lifez yenerally dominated
by hydrogen bonds, salt bridges and hydrophobic contactsathe interface [18, 20].
These local interactions have to be desolvated, densekedand hence deeply buried
to make contribution to the binding free energy [40, 34, 12, Jhis is why the energet-
ically important hot spot residues in the interface tendltster into local regions with
low solvent accessible surface area (SASA) values [3, 19].

Identifying these energetically important residues, \itdan offer useful information
to protein engineering and better understanding on prgieitein interaction [28], is
usually done by site-directed alanine mutagenesis. Thperaxental method mutates the
target residue into alanine which only but still hasfi@avy atom on its side-chain [9,
38]. Residues whose mutation results in large binding freegy changeX2.0 kcal/mol,
for example) are defined as hot spot residues [8].

Many feature-based [16, 11, 6, 36, 39] and energy-base®[R. 722, 25] computa-
tional approaches have been proposed to address the hpregattion problem. Almost
all of these feature-based methods use the SASA informafitime residue as a critical
feature in the prediction. A low SASA is necessary for a resitb be a hot spot residue,
however, it is not sufficient as a large number of non hot sggitiues also have low SASA
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values. Therefore, the SASA is not effective to tell theati#ince between slightly buried
residues, a large part of which are non hot spot residuesi@sply buried residues that
are very likely to be hot spot residues.

In this work, we introduce a new descriptor for protein at@nd residues. Itis named
burial level, a more informative concept than SASA. In th&rdion of burial level, the
buried immobilized water molecules are treated as an iat@girt of the protein complex.
We show that our definition of residue burial level is nicetrrelated toAAG. A high
burial level is not only in general necessary for hot spoitiess but also more sufficient
for them in comparison to SASA. In other words, most hot spsidues tend to have high
burial level while most non hot spot residues are exposedsbisjightly buried. We also
define the burial level of atomic contacts and we calculagentnmber of three types of
buried interfacial atomic contacts that are directly brokdnen the residue is substituted
by alanine at different burial level. The number of thosepifeéuried atomic contacts
together with the burial level of the residue itself are ligrtfed into SVM as features to
classify interfacial residues into hot spot residues or mainspot residues. By applying
our method to a data set of 258 mutations, we achieved an Funeeat0.6237 under
the hot spot definition oAAG>2.0 kcal/mol, which is better than other computational
methods. We also conducted a detailed analysis of the &satwged in this work, and
we found that the hot spot residues tend to have significamblge deeply buried atomic
contacts than non hot spot residues.

2 Materials and Methods

2.1 Data set

Our data set is collected by retrieving the experimentalinEamutagenesis data from
the alanine scanning energetics database (ASEdb) [35]@nd greviously published
works [10, 13, 7, 30, 31]. The requirement for the data is:thtae 3D structure of the
wild-type protein complex is solved by X-ray crystalloghggand is reported in PDB [2],
and the solvent information is included in the PDB file. We dbconsider protein-ligand
interaction or protein-peptide interaction in this workishthose interactions that do not
have an extended interface are excluded. The structurdhsiy of the complexes are
tested by the CE algorithm [33]. If the two chains of the twongbexes have a significant
similarity at the same time, their binding interfaces aréfer checked to ensure that there
is no redundancy in the data set. Only the mutations in tlesfente are considered.

Our data set consists of 258 mutations distributed in 13smatomplexes. Hot spot
residues are usually defined by settfyG>1.0 kcal/mol orAAG>2.0 kcal/mol. We
prefer to the second choice, as only a high&6 threshold can reflect the direct influence
of the mutation. That is, the interfacial atomic contactst tare directly broken by the
mutation are taken into consideration. Some researchers gested that a residue
should have AAG higher than 4.0 kcal/mol so as to have a strong impact onititéry
of the two proteins [28]. In practice, a lower value is takegét enough data for statistical
analysis [28].
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Figure 1: Cross-section of a growth hormone and growth haemeceptor complex
(PDB id: 1A22) showing the burial level pattern. A layer obats in the front are shown
as spheres while those at the back are shown as sticks.

2.2 Feature generation
2.2.1 Burial level of atom, residue and atomic contact

Our definition of burial level is based on atomic contact ¢rajphe atomic contact
graph of a protein complex is an undirected graph with heéoyna as nodes and atomic
contact as edges. The atoms in this graph is labeled as ekposeiried according to
its SASA. If the SASA of an atom is not less than 10?04 is exposed, otherwise it is
buried. The SASA is calculated by the NACCESS software wigdbased on the Lee
and Richards algorithm [23]. All thexposed water molecules, which we consider as part
of the bulk solvent, are removed in advance while the buriattmmolecules are kept as
a part of the complex, thus their oxygen atoms are a part ddtiiraic contact graph. The
atomic contact is defined by a distance threshold and thendbcbagram. Two atoms are
considered to be in contact if they have a distance less liganan der Waals radius plus
the diameter of a water molecule (2.75A) and they share andirfacet. This distance
threshold is based on a water-free idea and it has been uf24].in

In an atomic contact graph, the burial level of an atom is a@efias the length of the
shortest path from this atom to its nearest exposed atomexanple, the burial level
of exposed atoms is 0 and the burial level of their immediatgehl neighbors is 1. We
calculate the burial levels by adding a pseudo node, whiphesents bulk solvent, to
the atomic graph. This node is connected to all of the exposeéds directly. Then the
burial level of any atom equals to the length of the shortash ffrom this atom to the
pseudo node minus 1. This is exactly the single-sourcetesttgpath problem and it can
be simply solved by using Dijkstra’s algorithm[12].

Figure 1 shows a burial level pattern inside a growth hornmamg growth hormone
receptor complex. As can be seen from the figure, atom bw@l lis indeed a good
indicator to describe the extent to which an atom is burieiti; a protein or a protein
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complex. Itis clear that the burial level of any two neighihgratoms can have a differ-
ence of at most 1. Because the complex is not perfectly gldtzn be noted that burial
level 2 is “thicker” with more atoms.

The burial level of a residue is the average value of the blavals of all atoms in
the residue. For an atomic contact, if the burial levels efttho atoms are the same, the
burial level of the atomic contact equals to the burial lefehe two atoms, otherwise it
equals to the smaller one of the two burial levels.

2.2.2 Directly broken atomic contact, atomic contact typesnd features

When a residue is mutated into alanine, some interfaciahiatcontact are directly
broken because of the removal of certain atoms; Some ottesfanial atomic contacts
may also be broken or distorted due to the conformationaighan the local region [31].
Given a residue, we just consider its directly broken imteiel atomic contacts, which
are the contacts that are made by atoms other@ah O, C? andCP and their contact
partners are from the other chain.

We classify the atomic contacts into three types. If a cdritalbetween a positively
charged atom and a negatively charged atom, which usualitgsmonds to a salt bridge,
itis called a Type | contact. If a contact is between a hydndgend donor and a hydrogen
bond acceptor, which usually is a hydrogen bond, it is di@ssas Type Il contact. Con-
tacts that are neither Type | nor Type Il are classified as T\ypere, the definitions for
positively charged atoms, negatively charged atoms, fggirdond donors and hydrogen
bond acceptors are followed from those in [19]. We do nothierrtdivide the Type 11l
contacts into subtypes such as other polar contact, hydimphontact and so on because
they are all not that specific as Types | and Il contact. Naaettie definitions for Type |
and Type Il contacts are not exactly the same as salt bridgkkydrogen bonds in terms
of the geometrical requirements, yet they can be still venyartant [29].

In this work, we use those deeply buried atomic contacts wlsial level is not
less than 2. We refer the atomic contacts at burial level Oxpssed atomic contacts
and those at burial level 1 as slightly buried atomic corstacetC(i, j) denote the num-
ber of Typei directly broken interfacial atomic contacts at burial leyeof a residue.
Then our model contains 6 features to describe a resi@die> 2), C(I1,2), C(l1,> 3),
C(I11,2), C(111,> 3) and the burial level of the residue. SVM model based on ttas fe
ture set is named DBACDEeeply Buried Atomic Contacts). For comparison, we have
also built another model named ABtomic Contacts) which is based on another feature
set containing(l,0), C(1,1), C(I,> 2), C(l1,0), C(l1,1), C(I1,2), C(l1,> 3), C(I1,0),
C(111,1),C(111,2), C(l11,> 3) and the burial level of the residue. The maximum value of
burial level depends on the size of the protein complexedtamdize of the interfaces. In
general, very few contacts have burial level larger tham 3yes do not distinguish further
when the burial level are larger than 3. For Type | conta&tdlare very few cases that
have burial level larger than 2, thus we do not G$k > 3) as another feature but merge
it with C(1,2) into C(l, > 2).

2.3 Support Vector Machine training-testing protocol

Support Vector Machines (SVMs) are widely used in many diassion and re-
gression problems. They have also been adopted in the htst ppediction problems
[6, 39, 25] with various feature sets and training-testimggcols. In this work, we take
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the LIBSVM software [5] which is a tool for SVM model trainirand testing available

athttp://ww. csie.ntu. edu.tw ~cjlin/libsvm Thekernelwe used is the
radial basis function (RBF). We did not conduct feature ct&da@ because our method
is straightforward, and the number of features is not lafgeanwhile a feature selec-
tion on the whole data set will introduce over-fitting. Howewe do have evaluated the
performance on two different feature sets: using the deleptied atomic contacts only

(DBAC) and using all the atomic contacts (AC), where theclatéature set is evaluated
just for comparison.

The performance is evaluated under the leave-one-out-gediskation. To avoid the
over-fitting, we have strictly followed a nested-loop cressidation procedure. There
are 258 mutations in our data set, each time one mutatiokes tas the test data and the
remaining 257 mutations are used to train the model. The &varpeters, namely cost
and gamma, are optimized on the training data by a grid se@tehgrid search evaluates
the performance, F measure, of SVMs with different parametieies on the training data
under the 5-fold cross-validation, and the parameter gaklith the best performance are
chosen to build a training model on the training data. Thagtng model is then applied
to the test data, that is, the mutation held out in advances @rocedure is repeated 258
times till every mutation in the data set is tested.

2.4 Metrics in performance evaluation and statistical ana}sis

The performance is measured by sensitivity, precisiongifipity, accuracy and F
measure (F1) that are defined as followssitivity = 5, precision = oo

TPIFP:
i fiaity — _ IN _ TP+TN __ 2xsensitivityx precision
speci ficity = x7gp, accuracy = sprepnren: aNdF L =~y preason + Where

TP, FP, TN and FN are the number of true positives, false igesijttrue negatives and
false negatives, respectively. A better classifier shouddligt the hot spot residues with
less false positives and less false negatives, thus the Sureahich combines sensitivity
and specificity is used to indicate the overall performance.

We also test the significance of differenceAG values of the predicted hot spot and
non hot spot residues. Basically, a classifier divides th&atimns in the data set into two
groups: computational hot spot residues and computatimrahot spot residues. The
significance ofAAG value difference in this two groups are tested by Mann-Wéyitest
[26]. The result of a classifier with higher F1 value can be Egnificant when its false
positives have very lIo&AG values (near 0 kcal/mol or even negative) and false negmtiv
have highAAG values.

We have also checked the value distribution of individualtdiees in hot spot and
non hot spot residues. The significance of difference inwtedlasses is also tested by
Mann-Whitney test.

3 Results and Discussion

3.1 Performance of hot spot residue prediction

As introduced, 5 new features are derived from those deeplgdbinterfacial atomic
contacts which are directly broken by the alanine subsiitut The feature values of a
residue are then fed into SVM together with the overall residurial level to predict
whether this residue is a hot spot residue or not. The pednom under the leave-one-
out cross-validation is shown in the second row of Table 1 .adfgeved an F measure of
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Table 1: Performance of our method (DBAC) in comparison wihng all atomic contact
(AC) and Robetta

Method | Sensitivity Precision  Specificity Accuracy F1 p-value
DBAC | 0.58 0.6744 0.9327 0.8643 0.6237 3.0280 12
AC 0.32 0.5333 0.9327 0.8140 0.4 1.2849°°
Robetta| 0.44 0.3667 0.8173 0.7442 0.4 5.38410 8

Table 2: Comparison of our method with MINERVA

Method Sensitivity  Precision  Specificity Accuracy F1 p-value
DBAC 0.5833 0.7 0.9366 0.8652 0.6364 2.401D°
MINERVA | 0.5 0.6667 0.9366 0.8483 0.571 1.3%@n 7

0.6237, whemMAG>2.0 was used a threshold to define hot spot residues. Thesjureci
of our method is higher than the recall, which means thaethee fewer false positives
than false negatives. A reason for this is that our model esighs the contribution
of directly broken atomic contacts. The contacts that aok&dam or newly formed by the
conformational change during the mutation are hard to beee@fjuantitatively. ThAAG

of some hot spot residues whose mutation may result in lavgéoomational change,
cannot be fully explained by its directly broken atomic amts. This is reflected in the
lower sensitivity value. The non hot spot residues, whs6 is low, tend to have fewer
directly broken atomic contacts, leading to a smaller nunobélse positives and hence
a higher precision.

We have also evaluated the performance by using the AC fes@tiwhich takes those
exposed and slightly buried atomic contacts into constaeras well. The performance
is shown in the third row of Table 1. It can be noted that thégrarance is not improved
although the extra exposed and slightly buried atomic aistare added to the feature
set; rather the F measure is driven down to 0.4 and the statisignificance is reduced a
lot as well. The reason will be presented later.

We have compared our method with Robetta [21, 22], a widelggrized gold stan-
dard for benchmark comparison in the field. Robetta servempcadict theAAG value
of interfacial residues by computational alanine scanbgged on an energetic function.
Its performance on our data set is shown in the forth row oferdb Our performance is
remarkably better than that of Robetta in terms of both Flmuadlue.

We have also compared our method with another machine freamethod, MIN-
ERVA [6], which uses SVM as well and is based on a larger feadet containing various
aspects of information of target residue such as weightadiatpacking density, relative
surface area burial, weighted hydrophobicity and so on. I#RMA has a good perfor-
mance in terms of the F1 value as reported in comparison wlithr @revious machine-
learning methods. Because its source code and softwareaeailable, we compare the
performance on the common data that is reported in the MINEBAper and that is also
covered in our data set. This common data set contains 17&iong with 36 hot spot
residues and 142 non hot spot residues. The comparativepenfices is shown in Table
2, from which it can be noted that MINERVA does not outperfaun method in terms of



Identifying Protein Binding Hot Spots by Using Deeply Buried Atomic Contacts 161

Table 3: Statistical analysis on the features. The featurdise feature set DBAC are
emphasized in italics.

Feature| RBL* C(,0) C(,1) c(,>2)
p-value | 5.0897x10° 0.2008 0.8204 0.0050
Feature| C(II, 0) C(1) C(l,2) C(I1, >3)
p-value | 0.0013 0.4133 1.2419x10° 3.5031x10°
Feature| C(IIl, 0) c(i,1) c(m,2) C(I11,>3)
p-value | 0.0034 0.0945 1.9061x10%6 1.1621x10°

*:residue burial level

F measure and p-value. Besides, MINERVA conducted a featleetion based on the
whole data set, which selects only 12 out of 54 features. ptosedure can introduce
much over-fitting to the performance. MINERVA also has besstdd on an independent
data set derived from BID [15] where the importance of a asiid labeled as “strong”,
“intermediate”, “weak” or “insignificant”. As in MINERVA, aesidue is regarded as a
hot spot residue only when its label is “strong”. We havee@siur model (trained on
our data set, 258 mutations) on a subset of this independémisét of which the corre-
sponding PDB files have the solventinformation reportediaioing 111 mutations. The
performance of our model in terms of F1 on this data set is 52%he as that of MIN-
ERVA. Note that the label of of a residue is not perfectly etated to itsAAG, which is
an inconsistency between the training data and the testhiataever it still can indicate
the contribution of a residue to the binding.

3.2 Feature analysis

We tested the significance of difference for the values obéufe in the hot spot and
non hot spot residues. These p-values are reported in Talilés3clear that the DBAC
features have very low p-values, indicating that their galare significantly different
between the two classes. The p-valuecoF, > 2) is not as low as that of other DBAC
features, because residues that have salt bridges are fevgenumbers of slightly buried
atomic contacts are not that significant as those of the gbepied ones. Thus our feature
set can indeed reflect the contrast between hot spot resahaeson hot spot residues,
and the idea of excluding slightly buried and exposed ataritacts and instead using
deeply buried atomic contacts is statistically reasonable

3.2.1 Residue burial level

Residue burial level is a very important feature to predattdpot residues. Its p-value
shows the most significant difference between hot spotuesidnd non hot spot residues
as can be seen in Table 3. Here, we explain that residue bugéhis more sufficient than
SASA in hot spot prediction.

Bogan and Thorn [3] found that the hot spot residues tendve lmav SASA values.
Based on this observation, they suggested the existenceaing @f energetically less
important residues that are responsible of protecting thesot. Generally a low SASA
value is a necessary condition for a residue to become a botesgidue, thus it is usually
used someway in the hot spot prediction. For example, thgptoit database [16] defines



162 The 4th International Conference on Computational Systems Biology

100 T T T T T

I 00G<2.0
[anG22.0

Percentage(%)
Percentage(%)

[0, 30) [30.60)  [60,90) 90,) 0 0.1)

2,)
SASA(12)

[1,2)
Residue Burial Level

(a) (b)
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Figure 3: Percentage of hot spot residues and non hot spotiesshat have at least one
Type | (), Type Il (b) or Type Il (c) directly broken inteid&al atomic contact at different
burial level.

the computational hot spots as those conserved residudsatvmlarge SASA change in
complex formation and low SASA in the complex. However, a BASA value is not

a sufficient condition of hot spot. As observed in Figure 2{@)our data set, the hot
spot residues tend to have low SASA values with more than 80¥edot spot residues
having SASA less than 30%A But the non hot spot residues also follow such a tendency
(55%) in a less remarkable yet observable way.

In contrast, as shown in Figure 2(b), the hot spot residuss tie have a high burial
level, while non hot spot residues do not. More than 60% ohibitespot residues have a
burial level no less than 2.0, whereas the non hot spot resigith such burial levels are
less than 20%. Thus, we can conjecture that a high burial ievet only necessary but
also more sufficient than a low SASA value for a hot spot residu

3.2.2 Deeply buried atomic contacts

Type | atomic contacts roughly correspond to salt bridgesn&researchers believe
that buried salt bridges provide neutral or even negatinéritmution to protein stability [1,
37] because the desolvation of charged groups requires emergy than the interaction
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energy of the formation of the salt bridge [17]. But in prot@rotein interaction, it is
found that interfacial salt bridges are more buried tharakehain salt bridges, and the
salt bridges are found favorable across the interface [#Bjs may be the reason that
the two proteins are folded independently with more chamgstiues exposed and the
conformation change of them during the complex formationesy restricted, thus the
two proteins prefer to interact in an electrostatic comatary manner.

Percentages of hot spot residues and non hot spot residwse@fi,x) are larger
than 0 are plotted in Figure 3(a). Generally the hot spotitess tend to have their salt
bridges buried while non hot spot residues do not. Two adfaegposed oppositely
charged groups may not form stable salt bridges at all [3d]s some exposed Type |
contacts, most of which are possessed by non hot spot resichay not be stable salt
bridges.

The hydrogen bonds indeed play a key role in protein-pratgéraction [20]. Most
interfacial hydrogen bonds are extremely buried and theenbaried a hydrogen bond
donor/acceptor is, the more likely it is to form a hydrogend®0]. Thus being buried
is favorable for interfacial hydrogen bonds. Figure 3(l)wehthe percentages of hot spot
residues and non hot spot residues whogé, x) are larger than 0. It can be seen that
nearly 30% of the non hot spot residues have exposed Typemiiatcontacts, but very
few of them have deeply buried hydrogen bonds. There are nesigdues have deeply
buried hydrogen bonds while a few of them have exposed hyarbgnds. The number
of residues that have extremely buried (burial lev8) atomic contacts is limited by the
size of the protein complexes.

Type Il contacts contain all other kinds of contacts that aeither salt bridges nor
hydrogen bonds, including hydrophobic contacts and otb&&rgontacts. Actually hy-
drophobic contacts are not specific contact between atotesédthe packing of groups of
hydrophobic side chains. The contribution of hydrophobiatacts to bonding free energy
is correlated with the buried surface area [32]. Thus enie@ly important hydrophobic
contacts are those buried ones. Generally the proteiriprisiterface are dominated by
salt bridges, hydrogen bonds and hydrophobic contactsdooétimes other contacts also
make contribution to the binding [40]. A hot spot is usuallgensely packed region in
the interface, thus the number of buried contacts of a hat rgsidue tend to be large,
which can be reflected by deeply buried Type Il contacts. g in Figure 2(c), more
than 80% of the hot spot residues have Type Il contact agablavel 2 and only about
20% non hot spot residues have Type Il contact at this blavall.

3.3 Case study: two residues that are difficult to classify

Figure 4 shows the structure of two residues that are difftcutlassify. ARG-17
of BPTI shown in Figure 4(a) is well buried in the interfacetioé complex with a very
low SASA of 8.0&, a small SASA value even not enough to define an exposed atom.
Argnines are actually very likely to be hot spot residue2f,especially when they have
such a low SASA. However, this ARG-17 is a non hot spot resitlaeing aAAG of only
0.5 kcal/mol. Its burial level is 1.55, which is not a highwaland more importantly, we
found that almost all its atomic contacts with bovine chyrypsin are just slightly buried
or even exposed. There are 4 Type Il contacts as shown in tre figith 2 exposed and 2
slightly buried. It also has another 15 Type Ill contactghvii3 slightly buried, 1 exposed
and 1 deeply buried. We successfully classified this ressdugon hot spot residue.
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Figure 4: Two residues that are mutated in our data set. (&-ARof BPTI (in yellow) in
bovine chymotrypsin (in green)-BPTI complex (PDB id: 1CBW) TYR-29 of barstar
(in yellow) in barnase (in green)-barstar complex (PDB iBRS).

Another example as shown in Figure 4(b) is TYR-29 of barstéuis residue is ex-
posed with an SASA of 67.17A however it is a hot spot residue with\G of 3.4
kcal/mol. There are only two hot spot residues that have aB/Skrger than 60Ain
our data set. We can still successfully identify it as a hot spsidue by using its deeply
buried atomic contacts. The side-chain of tyrosine whicht@ims an aromatic ring and
a hydroxyl group is capable of forming aromattanteractions and hydrogen bonds [3].
As can be seen from the figure, although TYR-29 of barstarrisgtist exposed, its side-
chain stretches into the complex and forms many deeply thatiemic contacts. For the
4 Type Il interfacial atomic contacts shown in the figure, 8 deeply buried and 1 is
slightly buried. There are another 8 deeply buried Typedhtects, of which 7 are made
by the aromatic ring and 5 are atomic contacts with HIS-10R2aetive site residue of
barnase [4].

4 Conclusion

We have proposed a feature-based method to predict prioitiiing hot spots by
using the deeply buried interfacial atomic contacts thatdirectly broken during ala-
nine substitution. The method is based on a graph theokelédmition of burial level
of residues, atoms and atomic contacts. We achieved an Funeeas0.6237 when
AAG>2.0is used as the threshold to define hot spot residues.

The burial level of a residue is more intuitive than the cqrioé SASA, and itis nicely
correlated with théAAG of a residue. We have shown that a high residue burial Isvel i
in general necessary for a residue to be a hot spot residue.mme importantly, it is
more sufficient than SASA that is frequently used in hot spetligtion. Our results also
reveal that the hot spot residues tend to have deeply buded@contacts while the non
hot spots tend to have exposed and slightly buried ones.ig bnsistent with previous
studies that emphasize the energetic contribution of dig@dt bridges, hydrogen bonds
and hydrophobic contacts.
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