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Abstract In this paper, we develop an optimization approach to identify a position in a region
where the corresponding SNP is associated with the disease locus optimally in the scaled distances
among SNPs. The optimization model involves the construction of genetic mappings with the
linkage disequilibrium among SNPs. A simulation study is given to illustrate the effectiveness of
the model.
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1 Introduction
Linkage disequilibrium analysis offers the prospect of fine scale localization of ge-

netic polymorphisms of medical importance, particularly when single nucleotide polynor-
phisms (SNPs) are densely appeared in a candidate region. The role of linkage disequi-
librium (LD) is to identify and then narrow a candidate region. Because of the complex
observed patterns, the modeling of the relationship between SNP markers and disease
phenotypes is required [14]. Maniatis et al. [10] developed a metric LD map with addi-
tive distances in LD units based on the Malecot model. The application of LD maps to
association mapping and positional cloning was studied in [11].

Because of their ubiquity there has been considerable interest in using single nu-
cleotide polymorphisms (SNPs) to fine-map susceptibility loci [1, 13]. It is estimated that
90% of naturally occurring sequence variations are SNPs [3, 4] and these are sufficiently
finely spaced that one may reasonably expect to find several within a defined chromoso-
mal region which can be small enough to manifest detectable linkage disequilibrium in
at least some human populations. Detecting association between SNPs and disease may
provide useful evidence for the existence of a susceptibility locus within such a region,
allowing one to proceed to more intensive investigations which can lead to identification
of the gene and pathogenic polymorphisms.

Several strategies have been proposed by utilizing two-point methods to localize the
position of a disease locus [5]. However, SNPs studied individually might be expected
to provide relatively little information for detecting association between a disease and a
∗Research supported in part by RGC 201508 and HKBU FRGs.
†ahyiu@graduate.hku.hk
‡mng@math.hkbu.edu.hk, the corresponding author

The Fourth International Conference on Computational Systems Biology (ISB2010)
Suzhou, China, September 9–11, 2010
Copyright © 2010 ORSC & APORC, pp. 147–154



chromosomal region [14, 16], especially if more than one mutation is present. Poten-
tially the amount of information available from SNPs could be increased dramatically
by utilizing information from several marker loci simultaneously, with the aim of detect-
ing association with a marker haplotype rather than just one biallelic marker. Composite
likelihood methods combining disease associations with a series of linked markers from
haplotypes have been proposed by Collins et al. [4], Lam et al. [8] and McPeek & Strahs
[12]. With many of these methods the emphasis is to identify as closely as possible the
probable position of the disease gene relative to the markers.

The main aim of this paper is to develop an optimization approach to identify a po-
sition in a region where the corresponding SNP is associated with the disease locus op-
timally in the scaled distances among SNPs. The optimization model involves the con-
struction of genetic mappings with the linkage disequilibrium among SNPs.

The outline of this paper is as follows. In Section 2, we study our constrained scaling
models. In Section 3, we present our optimization approach to identify a disease locus
position. In Section 4, a simulation study is given to illustrate the effectiveness of the
model. Finally, a concluding remark is given in Section 5.

2 Constrained Scaling Models
Let us consider two biallelic SNPs, where the rarest allele has frequency p, and is pos-

itively associated with an allele at the other SNP, which has frequency q. The haplotype
frequencies of the 2 SNPs can then be represented in a 2-by-2 table as follows:

Allele B Allele b
Allele A pq+d p(1−q)−d p
Allele a (1− p)q−d (1− p)(1−q)+d 1− p

q 1−q 1

The parameter d is defined as the linkage disequilibrium (LD) between the two SNPs.
Because of the above allele assignment for p and q, we have p <= 1/2, p≤ q, p≤ 1−q
and d ≥ 0. The scaled measure of linkage disequilibrium between the two SNPs is defined
as follows: d′ = d

p(1−q) , Note that d′ = 1 requires only d = p(1− q) or d = (1− p)q.
Since d′ decays by a factor of 1−θ per generation where θ is the recombination fraction,
the function − lnd′2 has the property that it is proportional to − ln(1− θ). Note that
for small values of θ , − lnd′2 is approximately proportional to θ , and therefore is also
proportional to genetic map distance measured in units of Morgan, see for instance [14].
The LD distance between the ith SNP and the jth SNP can be given by li j =− lnd′2i j . For
a set of n SNPs, their inter-marker LD distances can be represented in an n-by-n matrix
[li j]i, j=1,2,··· ,n.

We require a 1-dimensional representation of the SNPs, preserving the order of the
SNPs on the chromosome, such that the distances between SNPs along this dimension are
close to the distances in the n-by-n LD distance matrix. The classical metric unidimen-
sional scaling problem is to place n objects on the real line, so that the interpoint distances
best approximate the observed dissimilarities between pairs of objects. It is well-known
that this problem is equivalent to an NP-hard combinatorial problem [9]. However, in
the constrained unidimensional scaling problem, the objects are required to place in a
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given order. In our context, the order of the SNPs is already given as follows: 1st, 2nd,
3rd, · · · , nth Therefore, the key issue is to determine the nonnegative interpoint distances
among the ordered SNPs that best approximate the observed dissimilarities between pairs
of SNPs. Mathematically, the problem is to minimize the objective function:

J(z1,z2, · · · ,zn−1) = ∑
i> j

wi j

(
li j−

i−1

∑
k= j

zk

)2

, (1)

subject to
zk ≥ 0, k = 1,2, · · · ,n−1,

where zk is the “genetic” (not physical) distance between the kth SNP and the (k+ 1)th
SNP in the chromosome, and wi j is the positive weighting parameter in the approximation
of the dissimilarity li j. Here we consider ∑i−1

k= j zk is the scaled distance between the jth
SNP and the ith SNP (i> j), and such distance should be close to the dissimilarity between
the jth SNP and the ith SNP.

Here there are two remarks for the above constrained scaling model. (i) It is clear that
the solution of (1) can be formulated as the solution of a quadratic programming problem:
Such quadratic programming problems can be solved efficiently by interior point methods
[7]. (ii) The above constrained unidimensional scaling model can also be applied to the
case li j = ri j where ri j is the association between the ith SNP and the jth SNP.

3 The Optimized Identification Method
Our approach is to develop an optimization approach to identify a position in a region

where the corresponding SNP is associated with the disease locus optimally in the scaled
distances among SNPs. First, we define the objective function J (x) for each SNP x for
the chromosome region concerned where

J (x) =
n

∑
i=1

wix(lix−|x−
i−1

∑
k=1

zk|)2 (2)

when x is the order of SNPs and zk is the scaled distances obtained by (1). In the model,
we would like to pick one SNP out as the disease locus and then try to apply the objective
function J (x) to locate the disease locus. The minimum position of J (x) tells us the
possible position of the missing locus. Biologically, we would like to determine a position
in the chromosome where the disease locus is compromised with the scaled distances
among the SNPs in the chromosome.

In order to use the model, we need to input the data lix (the LD distance between the ith
SNP and the disease locus). Case-control studies are one of the most useful and prevalent
method in mapping disease loci. In the following discussion, we assume the hereditary
disease to be a recessive disease. In other words, it is a single gene disorder that occurs
when both copies of a gene must be malfunctioned. Here we make use of case-control
data to infer the linkage disequilibrium between the SNP and the disease locus. This can
be done by replacing Alleles B and b with Case and Control in the table of Section 2.
After we obtain d, we can calculate d′ and the corresponding LD distance between ith
SNP and the disease locus, i.e., lix.
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4 Simulation Study
In this section, we perform several simulation examples to test the proposed model.

We remark that the MATLAB program on CPU Intel 3.2c with 1G memory is used to
solve the optimization problem in (1). The program takes a file of d′ values produced,
for example, by HAPLOVIEW (Barrett et al., 2004). The weighting parameter wi j in (1)
is one of the square of the length of the 95% confidence interval of li j obtained by trans-
forming the 95% confidence limits of d′i j provided in output of HAPLOVIEW. We note
that if the length is large, the weighting parameter is small and therefore the importance
of such d′ contributes to the scaled distance is small.

4.1 Experiment 1
In the first experiment, we download a data set of chromosome 9 ENCODE data of

CHB people from Hapmap. It starts at the chromosome position 127063383 and ends at
the position 127451913, there are totally 400 SNPs selected. As a common practice, we
exclude those SNPs with minor allele frequency is smaller than 0.05. In Figure 1, we
show the scaled distance LD map of this region. According to the scaled distance, we
know that hot-spot regions are located around the big jump of the LD curve. Therefore,
we select SNP positions 48 and 132 to be our testing subjects (missing locus) where the
SNP position 48 is from the hot-spot region and the SNP position 132 is in the cold-spot
region. We remark that the chance of the recombination is usually higher in the hot-spot
region, while the chance is lower in the cold-spot region.

Figure 1: The scaled distance LD map of the testing region.

The simulation is carried out in the following way. The Hapmap data of CHB are the
genotypes of unrelated individuals. Thus, we can prepare a bootstrap replicate of same
size by simply drawing a random sample with replacement, see [6]. Therefore, we can
perform a bootstrap to estimate a confidence interval to our point estimate. We compute
the objective function J (x) at every SNP position and finally record the score of each
SNP. After 100 bootstrapping, we compare the J (x) of all SNPs with the predicted
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position in the original data set. We calculate the relative frequency f (x) that the score of
a SNP is bigger than that of the predicted position in 100 bootstrap replicates. Assume
y to be the predicted position by the original data set. Then x is in the α% confidence
interval if f (x)< α%. This is how we construct the confidence interval for the predicted
position y.

In Figure 2, we find some numerical results on our described method. The confidence
interval of SNP position 48 are quite narrow . For the SNP position 132, the confidence
interval is wider. We suspect that this phenomena can be explained by their locations in
hot-spot and cold-spot regions respectively.

(a)

(b)

Figure 2: The predicted positions and their confidence intervals (a) SNP position 48 and
(b) SNP position 132. Here x-axis is the SNP position and y-axis is the relative frequency.

4.2 Experiment 2
Suppose the disease is incomplete penetrance, that is to say, some carriers of the

disease allele do not express a particular phenotype (disease).

Identification of Disease Locus Using Constrained Scaling Models 151



(a)

(b)

Figure 3: The histogram for the predicted positions (a) SNP position 48 and (b) SNP
position 132. Here x-axis is the SNP position and y-axis is the frequency.

In this subsection, we consider the following setting of the simulated data of case and
control. Let qi and pi = 1− qi be the relative frequency of the major allele and minor
allele of i-th locus. The parameter of mutation is set to be 0.03, that is, the probability of
having a single mutation among 400 SNPs is 0.03 (here we use the same SNP data set in
Experiment 1). The genotype probabilities are set as follows:

Prob(D|22) = 0.001; Prob(D|12) = 0.01; Prob(D|11) = 0.95;

Prob(D|22) = 0.999; Prob(D|12) = 0.99; Prob(D|11) = 0.05.

We can also set K = qi
2P(D|11)+2qi piP(D|12)+ pi

2P(D|22) to be the prevalence of the
disease. By simple calculations, we know

Prob(11|D) = 0.7845; Prob(12|D) = 0.1486; Prob(22|D) = 0.06689;

and other probabilities related to D, so we assign the genotype on the disease locus based
on this probability. We build a pesudo-sample with n controls and N−n cases. Therefore,
we pick Prob(11|D)∗(n) people with genotype 11 and label as control, and we do similar
things on the other genotypes and the clinical status. In the simulation, we also assume
Hardy-Weinburg equilibrium is followed in the control group but it is not followed in the
case group.
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Let us test the SNP position 48 or 132 to be the disease locus position. In Figure 3,
we show their results of the predicted positions for 50 trials. We remark that there may
be more than one predicted positions in each trial, therefore the total count may be more
than 50. We see from the figure that we cannot detect exactly disease locus position,
but the proposed method still can detect nearby SNP positions. Here the total number of
predicted positions are 62 and 187 for the testing SNP positions 48 and 132 respectively.
In addition, we also test the other SNP positions (215 and 236). In Figure 4, we show their
results of the predicted positions for 50 trials (the total numbers of predicted positions are
108 and 176 and for the SNP positions 215 and 236 respectively). We see from the figure
the predicted positions are very close to the testing disease locus positions.

(a)

(b)

Figure 4: The histogram for the predicted positions (a) SNP position 48 and (b) SNP
position 132. Here x-axis is the SNP position and y-axis is the frequency.

5 Concluding Remarks
In this paper, we have studied how to use an optimization approach to identify a

position in a region where the corresponding SNP is associated with the disease locus
optimally in the scaled distances among SNPs. The optimization model involves the
construction of genetic mappings with the linkage disequilibrium among SNPs. Experi-
mental results are also reported to show the effectiveness of the method. In the future, we
study the following problems. Our aim is to understand the reason why the method can
or cannot detect the disease locus position. We suspect that it may be related to genetic
recombination of SNP regions and functional information of SNPs. On the other hand,
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an detailed biological analysis of some disease SNPs data sets will be studied using our
method.
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