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Abstract Single substrate and single product with inhibition (SSI) metabolic module is one of the
four types of basic building blocks of metabolic networks, and its multiple equilibria property has
important influence on that of the whole metabolic networks. In this paper, we characterize the rates
of the metabolic reactions by Hill kinetics, construct a special vector space, and give a unified model
for SSI modules by using a set of nonlinear ordinary equations with multi-variables. A sufficient
and necessary condition is given to describe the injectivity of a class of nonlinear systems, and then,
used to study the multiple equilibria property of SSI modules. For the SSI modules in which each
reaction has at most one inhibitor, a sufficient condition is derived to ensure the absence of multiple
equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere.
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1 Introduction
Revealing the property of multiple equilibria for a metabolic network is a fundamental

and important topic in systems biology. However, in the traditional theoretical analysis,
necessary information on model parameters is always required. Due to the limitation of
measurement tools, measurement errors and biological variability, most of the model pa-
rameters are either uncertain or unavailable. This not only makes it difficult to analyze
the model, but also limits the applications of the theoretical results based on a model with
fixed parameter values. In contrast to detailed model parameters, the topological struc-
ture of a metabolic network is relatively easier to be obtained and is invariant for many
cases. Hence, a structure-oriented analysis should be much more useful on understanding
qualitative dynamics of metabolic networks.

There are some pioneering works in structure-oriented study on multiple equilibria of
networks [2–5, 7], which have recently been surveyed in [6]. A metabolic network in a
living cell is a large-scale molecular network and contains a great number of metabolites
and reactions, and thus, is generally difficult to be theoretically analyzed as a whole,
especially when there is no parameters but only structure information available.
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To overcome such a difficulty, we proposed a structure-oriented modularization frame-
work in [6]: using the modularization idea commonly used in the area of control theory,
viewing a metabolic network as an assembly of basic building blocks (called metabolic
modules) with specific structures, and investigating the multiple equilibria property of the
original network by studying the characteristics of these basic modules and their interac-
tions. Such an idea not only reduces the difficulty in investigating a complex metabolic
network, but also makes full use of the structure information, thereby overcomes the lim-
itation of the methods based on models with fixed parameter values.

In particular, in [6] we showed that a metabolic network can be decomposed into four
types of basic modules according to the topological structure, and proved that one type
of those modules, i.e. the single substrate and single product with no inhibition (SSN)
modules, cannot admit multiple equilibria. Here we will focus on another important type
of those basic modules, i.e. the single substrate and single product with inhibition (SSI)
modules, and investigate their multiple equilibria property.

Comparing with SSN modules, an SSI module contains metabolic reactions which are
inhibited by other metabolites. Hence, the topological structure of an SSI module is much
more complex from theoretical viewpoint. The metabolites interconnect with each other
via reactions without inhibitions in SSN modules, while via reactions with inhibitions in
SSI modules. Inhibitions make the metabolites (state variables) couple with each other
in SSI modules, which are actually a kind of negative feedback. Moreover, the reaction
mechanisms are much more complicated in SSI modules than those in SSN modules.
For instance, when the other conditions (such as temperature, pH, the concentration and
activity of the enzymes) are unchanged, the reaction rates depend mainly on the substrate
concentrations in SSN modules but are simultaneously affected by the substrates, the
inhibitions and their interactions in SSI modules.

Owing to these inherent characteristics, both the modeling procedure and theoretical
analysis for SSI modules are much more difficult than those for SSN modules. Specifi-
cally, first, the intricate topological structure makes the modeling procedure for SSI mod-
ules much complicated. It is relatively easy to describe the rate of a metabolic reaction
based on Hill kinetics if its inhibitors are known. But in a general SSI module, each re-
action may be inhibited by other metabolites, and each metabolite may act as an inhibitor
for other reactions. Hence, it is difficult to construct a unified model for SSI modules.
Second, the strong coupling in SSI modules makes the model analysis difficult. The
metabolites mutually restrain each other via inhibitions in SSI modules, which may result
in a loop or other complex structure. Therefore, we have to consider all the metabolites
simultaneously, which makes the dimension reduction of the system useless. Third, the
complicated mechanisms of the reactions in SSI modules make the reaction rate equations
more complex. In fact, the reaction rate is an increasing function of one variable in SSN
modules, and is a polynomial that is increasing in any of its variables in the work [2–4] of
Craciun et al.. But, in SSI modules, the reaction rate involves multiple variables, and is
increasing in the substrate concentrations and decreasing in the inhibitor concentrations,
which is also the essential difference between this work and that of Craciun et al..

The above characteristics of SSI modules makes the analytical skills developed for the
SSN module cases no longer applicable. To overcome these difficulties, we first construct
a special vector space, and represent the unified model of SSI modules via a system of
nonlinear ordinary equations in a vector form. And then, we investigate the multiple
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equilibria property of SSI modules through analyzing a sufficient and necessary condition
of the injectivity of a particular nonlinear system. For the SSI modules in which each
reaction has at most one inhibitor, we derive a sufficient condition for the absence of
multiple equilibria, i.e. the Jacobian matrix of the rate function is nonsingular everywhere.

This paper is organized as follows. Section 2 describes what the SSI metabolic module
is and how to model it based on Hill kinetics. Section 3 gives a main result of this paper,
i.e. a sufficient condition for the absence of multiple equilibria of a common type of SSI
modules. Section 4 gives several general remarks and future topics to conclude this paper.

2 Modeling SSI metabolic modules
In this section, we will give the definition of SSI metabolic module first, and then the

general modeling approach based on Hill kinetics.

2.1 SSI metabolic module
Definition 2.1.
([6]) A metabolic reaction is called a single substrate and single product (SS) reaction, if
it contains only one substrate and one product; otherwise, called a multiple substrates or
multiple products (MM) reaction. An SS (or MM) reaction is called an SS (or MM) reac-
tion with inhibition, SSI (or MMI) for short, if there exist some inhibitors of the reaction;
otherwise, called an SS (or MM) reaction with no inhibition, SSN (or MMN) for short.

Remark 2.1.
A reaction will be viewed as two reactions if it is reversible. For example, take A

E−⇀↽− B as

the forward reaction A E−→ B and the reverse reaction B E−→ A.

Definition 2.2.
For a group of SS metabolic reactions (including SSN and SSI reactions), take each
metabolite as a node. If two nodes are contained in a same reaction, link them with a
directed edge (arrow) from the substrate to the product, and call such an edge reaction
edge. If a metabolite can inhibit some reaction, link the corresponding node and reaction
edge with a line that contains a bar at the end near the reaction edge. Then we get a
graph, called reaction graph of the group of SS reactions.

Now, we give an example to show how to get a reaction graph. Suppose that there are
two SS reactions: A→ B, C→D, and the metabolite D is an inhibitor of the first reaction.
The corresponding reaction graph is shown in Figure 1.
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Figure 1: A reaction graph.

Definition 2.3.
In the reaction graph of a group of SS metabolic reactions, a node is called an input node,
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if the direction of each reaction edge that connects with it is from it to some other node; a
node is called an output node, if the direction of each reaction edge that connects with it
is towards it. The other nodes are called state nodes. A state node that directly connects
with an input (or output) node is called a head (or an end) node.

Definition 2.4 (SSI module).
For a metabolic network, denote M̃ the set of all the metabolites, and R̃ the set of all the
reactions. The triple (S ,R,I ) is called an SSI module within the metabolic network, if
the following conditions are satisfied:

(i) S ⊂ M̃ is nonempty.
(ii) R ⊂ R̃ is nonempty and constituted of all the reactions which are relevant to the

metabolites in S . Here, “a reaction is relevant to a metabolite S” means that S is
the reactant, product or inhibitor of this reaction.

(iii) The reactions in R are all SS (including SSN and SSI) reactions.
(iv) I ⊂S ×R is nonempty, and its element (D,A→ B) means the metabolite D is

an inhibitor of the reaction A→ B.
Here, S , R and I are called the state node set, the reaction set and the inhibition set of
the SSI module (S ,R,I ), respectively.

2.2 Modeling SSI modules
Two broad classes of enzyme inhibitions, i.e. irreversible and reversible, are generally

recognized [1]. In an irreversible inhibition, the inhibitor combines with or destroys a
functional group on the enzyme that is essential for its activity, and we do not consider it
here. In contrast, in a reversible inhibition, the inhibitor dissociates very rapidly from its
target enzyme because it becomes very loosely bound with the enzyme. Three types of
reversible inhibitions are observed: competitive, uncompetitive and noncompetitive. Next
we will introduce those reversible inhibitions [1].

A competitive inhibitor can combine reversibly with the active site of the enzyme and
compete with the substrate. In the following reactions, the metabolite I is acting as a
competitive inhibitor of the reaction S→ P,

S+E
 SE→ P+E

I +E
 IE,

where S, E, P and I are substrate, enzyme, product and inhibitor, respectively. Based
on the Michaelis-Menten kinetics with the conservation condition on E, the rate of the
reaction S→ P can be described as

v =
VmaxCS

KM(1+CI/KC)+CS
, (1)

where CS and CI represent the concentrations of the substrate S and the inhibitor I, re-
spectively; Vmax means the maximum rate of the reaction, KM is the Michaelis-Menten
constant, and KC is the competitive inhibition constant with respect to I.

An uncompetitive inhibitor cannot combine with a free enzyme, but only with an
enzyme-substrate complex, and precludes the complex from converting into product. In

142 The 4th International Conference on Computational Systems Biology



the following reactions, the metabolite I is acting as a uncompetitive inhibitor of the
reaction S→ P,

S+E
 SE→ P+E

I +SE
 SEI.

In this case, the rate of the reaction S→ P can be described as

v =
VmaxCS

KM +CS(1+CI/KU )
, (2)

where KU is the uncompetitive inhibition constant with respect to I.
An noncompetitive inhibitor can combine with both free enzyme and enzyme-substrate

complexes. In the following reactions, the metabolite I is acting as a noncompetitive in-
hibitor of the reaction S→ P,

S+E
 SE→ P+E

I +E
 EI

I +SE
 SEI.

In this case, the rate of the reaction S→ P can be described as

v =
VmaxCS

KM(1+CI/KC)+CS(1+CI/KU )
. (3)

Although the above three types of reversible inhibitions were observed in experiments,
from the theoretical viewpoint, (3) is a general (or an approximate) expression of (1) and
(2) with appropriate parameter values. Hence, we will take (3) to describe the rate of
reaction S→ P when I is known to be an inhibitor. Generally, for the reaction α → β , if
I1, · · · , Iq are inhibitors, then we can use

vα→β =
V α→β

max (Cα)
nα→β

Kα→β ∏q
i=1(1+CIi/Kα→β

CIi
)+(Cα)

nα→β ∏q
i=1(1+CIi/Kα→β

UIi )
(4)

to describe the reaction rate; and if there is no inhibitor, then we take

vα→β =
V α→β

max (Cα)
nα→β

Kα→β +(Cα)
nα→β

, (5)

where nα→β is the Hill coefficient.
Let (S ,R,I ) be an SSI module. Take the state node set S as a basis and construct

a vector space RS = {∑S∈S zSS : zS ∈ R}. As a convention, if α (or β ) in the reaction
α → β is an input (or output) node, view it as a zero vector in RS ; otherwise, view it as
a vector α (or β ) in RS . Let CS represents the concentration of the metabolite S. Then
the vector C = ∑S∈S CSS ∈ RS can represent the concentrations of all the metabolites
in S . Note that the reaction α → β consumes α and generates β with the rate vα→β
simultaneously. Thus, we can obtain a unified model for a general SSI module as.

dC
dt

= ∑
S∈S

ĊSS = ∑
α→β∈R

vα→β (β −α), R(C, p), (6)
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where p is the corresponding vector-valued parameter, vα→β is in agreement with (4) if
reaction α → β is with inhibitions, and (5), otherwise. R(C, p) is called the rate function
of the module. Noticing that all parameters in (4) and (5) are positive, and nα→β ≥ 1,
we denote such a parameter space by P. Since the concentration of each metabolite is
positive, we just need to discuss the system (6) in RS

+ = {∑S∈S zSS : zS ∈ R+ = (0,∞)}.
Definition 2.5.
For a fixed parameter p0, an equilibrium of the model (6) is a state C that satisfies Ċ = 0,
i.e. a solution of the algebraic equations R(C, p0) = 0. The system (6) or the SSI module
is said to have the capability of multiple equilibria, if there exists a parameter p0 such
that R(C, p0) = 0 has more than one positive solutions.

3 Model Analysis
Lemma 3.1.
([6]) Let F(·) be a real function defined on Rn, and D be a subset of Rn. For a system
described by a set of ordinary differential equations dx

dt =F(x), if F (also called the vector
field of the system) is injective in D, then the system cannot admit multiple equilibria in
D, i.e. F(x) = 0 has at most one root in D.

Lemma 3.1 provides a sufficient condition for the absence of multiple equilibria of a
general system, but such a condition is difficult to be verified. Hence, we need to convert
it into an equivalent one which is relatively easy to be verified. For some simple cases,
for example, f (x) : R→ R is continuously differentiable function of one variable, then
its injectivity is equivalent to that its differential is nonzero everywhere. Unfortunately,
there is no such an equivalence for a general high dimensional map. As an counterex-
ample, taking F(x,y) = ( 1

3 (x− 1)3,y)T , it is obvious that F(x,y) is injective on R2, but
the determinant of its Jacobian matrix is det(JF) = (x−1)2, which is zero on line x = 1;
and taking F(x,y) = (

√
2ex/2 cos(ye−x),

√
2ex/2 sin(ye−x))T [8], the determinant of its Ja-

cobian matrix is det(JF) ≡ 1, but F(0,y+ 2kπ) = F(0,y), which means that F is not
injective. Nevertheless, for some particular high dimensional map, its injectivity and the
nonsingularity of its Jacobian matrix is equivalent. We will give such a class of maps in
the following lemma with proof being given in Appendix A.

Lemma 3.2.
Let V be an n dimensional vector space on the field of real number R, S = {ε1, · · · ,εn}
be an orthogonal basis of V , D⊂ V be an open set, and R = {(αk,βk) : k = 1, · · · ,m} be
a finite subset of V ×V . For a fixed vector-valued parameter p ∈ P (P is the parameter
space), F(· , p) is a map on D, which has the form

F(x, p) =
m

∑
k=1

fk(x, p)(βk−αk), (7)

where x = (x1, · · · ,xn) is the coordinate of the vector ∑n
i=1 xiεi with respect to the basis

S , and fk(x, p) is continuously differentiable with respect to x. Then
(i) if for any x̃ 6= x̂ ∈ D and p̃ ∈ P, there exist x ∈ D, y(6= 0) ∈ V and p ∈ P such that

the following equation holds for all k = 1, · · · ,m,

fk(x̃, p̃)− fk(x̂, p̃) =
n

∑
i=1

yi
∂ fk

∂xi
(x, p), (8)
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then the Jacobian matrix of F is nonsingular everywhere on D for all p is a sufficient
condition to ensure that F is injective on D for all p;

(ii) if for any x ∈ D, y(6= 0) ∈ V and p ∈ P, there exist x̃ 6= x̂ ∈ D and p̃ ∈ P such that
(8) holds for all k = 1, · · · ,m, then the sufficient condition in (i) is also necessary.

Lemma 3.3.
Assume V , S = {ε1, · · · ,εn}, D = {∑n

i=1 ziεi : zi > 0} and R = {(αk,βk) : k = 1, · · · ,m}
have the same meanings as in Lemma 3.2. {N1,N2,N3,N4} is a partition of N = {1, · · · ,m},
i.e. they are disjoint and

⋃4
i=1 Ni = N. Let {rk : k ∈ N3∪N4,rk ∈ {1, · · · ,n}} and {qk : k ∈

N2∪N4,qk ∈ {1, · · · ,n}} be two sequences and rk 6= qk. Let

F(x, p) =
m

∑
k=1

fk(x, p)(βk−αk), (9)

fk(x, p) =





hk(pk) =
ak(uk)

nk

bk +(uk)nk
, k ∈ N1,

hk(xqk , pk) =
ak(uk)

nk

bk
(
1+

xqk
ck

)
+(uk)nk

(
1+

xqk
dk

) , k ∈ N2,

hk(xrk , pk) =
ak(xrk)

nk

bk +(xrk)
nk
, k ∈ N3,

hk(xrk ,xqk , pk) =
ak(xrk)

nk

bk
(
1+

xqk
ck

)
+(xrk)

nk
(
1+

xqk
dk

) , k ∈ N4,

(10)

where pk is the corresponding vector-valued parameter, its components ak, bk, ck, dk
and uk are positive real number, nk ≥ 1; p = (p1, · · · , pm) ∈ P (P is the corresponding
parameter space). Then the Jacobian matrix of F is nonsingular everywhere on D for all
p ∈ P is equivalent to that F is injective on D for all p ∈ P.

The proof of Lemma 3.3 is given in Appendix B.

Thorem 3.1.
If each reaction in the reaction set R of an SSI module (S ,R,I ) has at most one
inhibitor, then the sufficient condition for the absence of multiple equilibria of the corre-
sponding model (6) is that the Jacobian matrix

(
∂R
∂C (C, p)

)
of the rate function R(C, p) is

nonsingular for all p ∈ P and C ∈ Rn
+.

Proof. Divide the reactions in R into four classes: reaction that is from an input node to
a head node and with no inhibition, reaction that is from an input node to a head node and
with inhibition, reaction that is from a state node to other state node or output node and
with no inhibition, reaction that is from a state node to other state node or output node
and with inhibition, When each reaction in R has at most one inhibitor, the rate equations
of the above four classes of reactions confirm with the function fk in (10) for k in N1, N2,
N3 and N4, respectively. Thus, the model (6) of this SSI module is a special case of the
system (9), which means the results in Lemma 3.3 are still valid for such an SSI module
with V = RS and D = RS

+ .
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4 Concluding Remarks
The SSI module is one of the four types of basic building blocks of metabolic net-

works, whose multiple equilibria property was studied in this paper. Due to the com-
plexity of its topological structure, the strong coupling between each metabolite and the
intricacy of the reaction mechanism, it is a difficult task to analyze dynamic properties of
SSI modules. In particular, comparing with SSN modules which generally cannot admit
multiple equilibria, there exists negative feedback in SSI modules caused by inhibitions,
which makes the module structure and the reaction mechanism much more complicated.
This paper mainly discussed one common type of SSI modules in which each reaction has
at most one inhibitor, which is considered as the first step towards elucidating the design
principle of metabolic networks in living organisms. In the near future, we will further
discuss the SSI modules in which there are reactions with more than one inhibitor.

Appendix
Due to the limitation of space, the appendix is not published here. If any one is

interested in the proof, please email Hong-Bo Lei (leihb@amss.ac.cn).
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