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Abstract In this paper the dynamics of the transcription-transtaigstem forXInR regulon in
Aspergillus niger is modeled. The simulations are based on Hill regulatioretions and ordinary
differential equations. The response to a single triggeb-ofylose to the system is considered,
stability analysis is performed and the effects of acth@tand repressive feedback are also con-
sidered. Simulation and systems analysis showed significlnence on metabolite expressions,
the effect of the combined activating and repressing fegdbas significant on influencing the ex-
pression outputs. The responses for genes and proteing eardbrstood through modeling system
dynamics like we have shown.
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1 Introduction

The filamentous fungué. niger is a main organism in the production of enzymes
and precursors for the food and chemical industries. Catid is one of the most well
known products. The xylanolytic activator geRl@R is a main controlling gene in the
XInR regulon ofA. niger and is also one of the most studied parts of this organism. The
XInR regulon is activated by D-xylose as a culturing media [1]e Elrrent description
of this system is, however, based on static interpretatidgheosystem. As the activity of
the organism shows dynamic properties a quantitative nfodéte behavior of th&XInR
regulon is hereby proposed.

The challenge with genetic network modeling is with detering a specific equation
formalism to represent the network structure. One of thgssied strategies of modeling
using differential equations is to fix the form of the equat[@]. Prior knowledge on
the network structure is essential to develop a quantéatiedel [3]. The descriptive
information on theXInR regulon [1] enables us to hypothesize models for the intierac
in the different network components.

Modeling and simulation of th&InR regulon is explored by using nonlinear differ-
ential equations and Hill functions for the transcriptiorddinear reaction kinetics for
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the translation process. To ensure that detailed aspetig sf/stem are captured, some
assumptions are incorporated in the modeling. Pertunbatiperiments are performed
by triggering the genetic network at steady state. A stgtalnalysis is performed and the
effect of feedback in the system is explored.

2 Methodology

2.1 Regulation mechanism for theXInR regulon

In Aspergillus niger transcription of genes encoding xylanolytic and cellulizlyn-
zymes take place [1]. Activation enables the degradatidgh@tellulose and hemicellu-
lose from the plant cell wallsXInR is a zinc binuclear cluster protein consisting of about
875 amino acids, it is suspected ttR binds as a monomer. THnR gene is induced
in the presence of D-xylose as a culturing media and repildssthe presence @@reA.
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Figure 1: The XInR regulon induced by D-xylose in the presence or absencgref. P1 and
TP are the corresponding proteins from ¥iaR gene and target genes respectively. mRNA1 and
TGmRNA are the transcription products from tKR gene and target genes respectively. FB is
the feedback protein.

Gene regulation can take place at different stages of theadelogma of molecular
biology (DNA— RNA — Protein). These stages include among others transcrjption
translation and PTMs of the associated protein. In Figuresthteeme of the activities
in the XInR regulon is given. Th&InR gene is induced by D-xylose. At induction the
XInR gene produces mRNA which is translated in proteins. Thesteims then activate
the target genes (TG). For thdnR regulon, the number of target genes are estimated
to be in the order of 20 to 40. In Figure 1 all target genes goeesented by TG. After
transcription and translation of the target genes, pretaie obtained (TP). Protein from
post-translational modifications (PTM) can be involvedia tegulation of th&XInRgene
trough a feedback loop. At each step in transcription antstetion mRNA and proteins
can be degraded and/or used for other processes (D1-D4).

2.2 Transcription model

Commonly, hyperbolic functions and the sigmoid class ottions are used to repre-
sent the kinetics of gene regulation [4]. Such functions imitme nonlinearity in gene reg-
ulation, by assuming that a critical amount of protein buitdhave to be reached before
a gene can be considered regulated or repressed. The masiocoforms of functions
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used for modeling gene transcription are the Hill functifBifs]. Let z = [z,...,z,|"
represent the concentrations of the translated proteimesmonding to the genes.1. n;
wheren the number of involved genes, then the activating and reprgsunctions are
given by

(z,6)= —Z‘h Activator.
Y (z,6) eih_;z? iv
Y (z,6)= _a Repressor.

6"+ 2

wherey~(z,6) =1—¢*(z, 6), with the gene specific half-saturation paramé&emnd
the positive numbeh. The regulation mechanism for each target geisecaptured by
the functionW(z, &) in (1). According to Hasper et al., [7] there is evidence thlat
though most zinc binuclear cluster proteins bind as a diiheeems thaXInR binds as
a monomer - therefore, a Hill coefficient with= 1 is used. Given the availability of
structural prior knowledge and that the master regulattivates the target genes, the
nonlinear system is given by

W(z,6)= (1)

X1 = p1—KygXs +biug

. k2121
Xo = kog=————— — kpgX
2 P2+ 251+k2121 20%2
2ns = . (2)
: x(0) =Xo
. Kn1z1
Xn = ——=— — KngX
n Pn"‘knsl_H(anl KndXn

wherep; - Basal (eaky) transcription rate for genke ki, - effective affinity constant for
gene 1 activating gendi = 2,...,n), kis - synthesis parameter for gendq - first order
degradation rate (or consumption rate) for géné; - gene 1 activated transcription
rate constant for gerie Xg - vector of initial mMRNA concentratiorg; - concentration of
translated protein from gengb = [by, ..., by] T - input matrix andi = [uy, ..., un] T - input
vector (gene triggering compounds).

2.3 Translation model

Next a system of linear differential equations (3) to modw protein abundance
(translation process) is considered.

21 =T11X1—M2Z1; Z="rXo—N2Z2; ...; Zn="TpXn—NnZn; Z(0) =2zg (3)

wherer; - translation rate for genie n; - degradation rate for proteinandx - mRNA
concentration for genie Thez’s are represented by the TP’s in scheme 1. At steady state
the difference between the response rate and degradat@ialances out, i.e; ~ X, ~

.. & Xy ~ 0. By settingx; = 0 for alli in (2), we have

ki1zy ) >0

1+ki1za (4)

1 1
Xt = —(p1tbin); K =-—(pi+k
1 kg (p1+bauy); K kg (P| kis
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2.4 System stability

The interesting case to analyze is the systems behavioeialisence of the inhibitor,
CreA. Let us denote the equilibrium concentrations of mMRNA armtgin quantities by

X =[%1,...,%]|" andZ = [Z,...,Z,]" respectively. Using (3) the steady states lead to the
relationshipsq™= n;Z /ri for all i. The stability of each steady state (from (2) and (3)) can
be analyzed using Hopf Bifurcation. LEt: R?" — R?" be a set of functions (witFF =
(F1,...,Fn)) that capture the system dynamics. In this case we Rawexy, ..., Fn = Xn,
andF,11 =127,...,Fn = 2, in (2) and (3) respectively. The Jacobian matrix is given by

dFl/dxl [7F1/(92n
In() = : : (5)
szH/dxl dFZn/dZn |[)~( 7
This Jacobian matrix is then used to assess the reguloritstand to identify which

parameters dictate the transcript abundance. Let us finsider a case of three genes,
n= 3. The Jacobian is given hjs(-) = dF /9[x z]| wherex = [x1,X2,%3]" and

z=[z,2,2)]". Using expressions (2) and (3) in (5) we obtain

x 2

—Kig 0 0 0 0 0
0 kg 0 ¢ O 0
_ 0 0 kg ¢3¢ O 0
JS() - ri 0 0 T 0 0 (6)
0 ro 0 0 —nN2 0
n

0 0 ra 0 0 -—ns3

where

Kiski1 1 -
A - (1— —); for i=23 7

Gia 1+k5121( 1—|—k5121) (7)
A similar generalized expression f¢r,.1 can be obtained given a regulon wittiran-
scripts. The characteristic polynomial obtained frdst) is given by

3

Als() = rl()\ +Kid) (A + i) (8)

whereA (J3()) = |J3(+)|. Basing on (8), conditions can be established on the pasamet
to ensure global stability. The formulations of the Jacobizatrix and the eigenvalue
spectra can be extended toradimensional system. The generalization for the eigervalu
spectra can be shown to be

n

An() = |_l()\ + kid) (A + i) 9)

for n € Z*. Note thatA (Jn(+)) is independent of the translation rate parametgrand
the gene synthesis coefficidg and the terms in the expression (7). Clearly, from (9) the
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system is globally stableT¢(Jn(-)) < 0 and|Jn(-)| > O for all x,z). The system stability
behavior is dictated by how fast the translation and trapson processes proceed (i.e.
magnitudes okig and n;j). In metabolic terms this equates to demand and supply of
essential components in and out of the cell.

According to Aro et al., [8]; de Vries et al., [9]; Hasper et, §10] theA. niger gene:
eglA, eglB, egIC, cbhA, cbhB, xInB, xXInC and xInD contain binding sequences (GGC-
TAAA) to XInR protein as well as binding sequencesi@A, a repressor protein acting
in the presence of monomeric sugars (i.e., glucose) as-aegplfating mechanism. This
property ensures that most target genes have similar esipnedynamics in time. An
example is considered to investigate the time evolutioresfegactivity and protein abun-
dance in theXInR regulon.

Example. Consider a regulon network of three genes given a pertanbati) =
u(0)(1/(B + 1)), whereu(t) = [D-xylose] andB > 0, to trigger the system; with
K = 0.3 andu(0) = 50 mM as the initial D-xylose concentration. The paramaisesi
for the simulation areb; =1, p1 =2e—3, p» = 2.5e—3, p3 = le— 3, kyqg = 0.5,
k2d =04, kgd =0.3, kZS =5, kgs =6, k21 =0.1, k31 =0.1,rp,=rp=r3=0.5, n= 1,
N2 =1 andns = 1. The phase plots for the mMRNA and protein availability drem
in Figure 2

In Figure 2 both the gene expressions in plot (A) and protbimdance plot (B) show
similar behavioral dynamics. Moreover, with the choserutnpattern of D-xylose the
target genes show phase plots similar in patterns but witlatians that are dictated by
individual gene or protein kinetic parameters. A relaxatime of tr; = 1/kyg =~ 2 hours
is noticed for the master regulator and for the target gemes;. Tro, Trs. The relaxation
time is an approximation for the time required for the systermelax into steady state.
This represents the time it takes a system to react to amexidisturbance (D-xylose).

2.5 Feedback in the network

So far we have only considered a case of no feedback in theretiNext, we consider a
feedback into the network and study the system dynamics siee target gene products
are involved in the regulation of the master regula¥dnR. Assume that the PTMs have
some kind of time delayt() associated with each of them. Competitive feedback effect
were modeled at the promoter sites of ¥@R regulator gene. In the modeling and
simulation a fixed number of promoter sites for gene regufatvas assumed. Next the
effect of having an activating and repressing feedback @atyaed.

2.5.1 Activating and repressing feedback

We hypothesize that the target proteins (TP’s) and PTMsarfi¢bdback loop in scheme 1
only act on the regulator gepénR. Therefore, only the equation fay has to be modified
accordingly. The adapted equation is given by

%alt) = pr—kipa(t) + [bas(t)

1 KLSles,2(t—1)
* kls(l-l—kjLZjelej(t—T) 1+k|Lz|ESQZI(t_T)):|H (10)
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whereH = 1/(1+ kaCa(t)) is the repressor Hill function an@a - quantitative activity
state forCreA, kp - inverse of the Hill constant dfreA. The setsS; ={j | j=1,...,m}
andS;={l |l =m+1,...,n—1} where5;US; = {1,...,n—1} i.e. collection of all

the target proteins in the regulon. All the supposed reprgssd activating proteins are
lumped in the set§; andS,, respectively. The effect of the D-xylose and the feedback
loop is modeled as additive. Equation (10) also specifiebtiid up of proteins and re-
pression or activation of th¥InR gene through the feedback loop. Through the sequence
of PTMs the protein availability in the feedback loop is dedd. All the other components
representative of the target genes in the network modebn@)3) remain unchanged.

Since the presence @reA is a strong repressor that inhibits thitnR gene activity
by blocking the promoter binding site, we chose to modelitiflaence by considering a
switch function withH € {0,1}. HereH = 0 andH = 1 mean<reA s present and absent
respectively. In absence GfeA the protein products from the target genes are involved in
regulating the activity of the master regulator. Theseginproducts may either inhibit

or activate thexinR gene.
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Figure 2: (A): The simulated trajectory for D-xylose consumption.):(Bxpressions profiles
for genes, (C): Proteins abundance plots. (D): Phase plggioe expression showing variation of
mRNA concentrations of th&InR gene and the other target gene3.((E): Corresponding protein

abundance phase plot.
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In practice, quantifying the feedback effect of each indiidl gene in a network is
far from trivial. In fact, it is interesting to assess thenjpéffect of the feedback of the
target genes on the single master regulator. In geneticanksthe effects of PTMs can
be either activating, repressing or non at all. This rangeegtilation possibilities is
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Figure 3: (A) The simulated trajectory for D-xylose. (B) Gene expiessprofiles with solid
lines (~) showing the expression profiles for the genes in the absein€eeA. The correspond-
ing dotted lines «(--) show the simulated effect of competitive feedback. (C)énoabundance
profiles (solid lines).

considered and modeled in (10). Considering feedback lenpble better understanding
of any fluctuations in the protein availability. For bothigating and repressing feedback
loops with time delay, we definitively specifief{t) = 0 andz(t) = 0 fort < 0 and for
alli=1,....nandt =1 hour.

A comparison of the metabolite expression dynamics for #teark with and without
feedback loops is shown in Figure 3. The same parameters/aiubeExample above
were used for the simulation with the extra parameters fitBhlfeingkj. =1 andk =1
and the lumped synthesis parameter from (10) choséq asl. Figure 3 indicates the
enhanced metabolite expression as a result of incorpgratieedback loop in the model.
Using the adapted model (10), the computed entry in(the—+i)-th cell ( = j,I for all
values ofj andl) of the Jacobian matrix (5) is given by (11) and/or (12) dejieg on
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which proteins are involved in the feedback loop regulation
Ki t—1
? _ JLlek|SZ|§SZZ|( ) <0 1)
% |jesy (KiLYjes, Z1(t = 1)+ 1) (kL S1es, 2 (t—T) + 1)
F
% = ks ;>0 (12
Z |ies, (KiL Sjes, zj(t = 1)+ 1) (kL Sies, 2 (t — T) + 1)

The expressions (11) and (12) have the potential to yieldlawey behavior in the
metabolite response profiles. The oscillatory behaviorefwihexists) is purely governed
by the values of the system mechanistic parameters.

2.5.2 XInR gene promoter activity

The competitive effect of the activators and repressorghieipromoter binding sites
were also simulated. The effect of which transcriptiondacTF (activator or repressor)
wins occupancy of a promoter binding site depends partiherstrength of the synthesis
parameteks (see Figure 4). The promoter is most active (activity ardafd 80%) when
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Figure 4:Plot of theXInR promoter region activity[ 4, I'r. The term Al - is the combined
affect of competitive binding to promoter region by activat and repressors. Plots (i) and (i)
show the influence of wealk¢ = 1) and strongk s = 5) synthesis parameters respectively.

the regulon is fully active. This corresponds to the timedew at which the network is
fully responsive to the external perturbation. Let us dettimeepromoter activities by (13)
and extracts of the denominator functions by (14)

KLY jes,2(t—T) 1
A = MR=
A 1+KLYes,2(t—T) R 1+KjL Y jes Zi(t—T) (13)
Pa = ki (14)

le

z(t—1); Pr= kij;le (t—1)

For the sake of illustrations, two target genes were consitlé.e. values of =1 and
I = 2) in the simulation with one as an activator and the other espeessor (we used
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kiL = k. = 1). Extending the model with lumped feedback regulatorgctff further
complicates the analysis. We consider the §gtandS, of unit elements. We observe
that the activator has a tendency of occupying most of thepter sites at any given time
(see Figure 4).

To assess the effect of time delays in the transcription eartslation processes, we
simulated some cases (Figure 5). The simulations were npeefib for specific cases of
T =1 hour andr = 5 hours and the outputs compared.
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Figure 5: (A)-(B) Plots showing the effect of variation in time delay the feedback loops
corresponding to the transcription and translation preegsrespectively. The observed effect on
the responses is small except for the slight deviation apéladk of the expression profiles.

3 Discussion

Additional simulations showed that the dynamics of the Degg input function con-
sidered in the examples has an important effect on the psafilhe individual metabolite
concentrations. This is particularly dictated by the vadfi¢he parameters in the input
functionu(t). The larger the value of th€, the faster the consumption of D-xylose. This
depends on the chemical reactions taking place in any gienot the saturation levels
of the individual compounds in a cell.

Feedback affects the response of the output profiles for gtabolites seriously (Fig-
ure 3). Further simulations showed that variations of tmetdelay in the feedback loop
(tr=1,2,...,5 hours) have a small effect on the response (Figure 5). Mastigations in
subsection 2.4 show that the network system dynamics éghibioscillatory behavior.
Nevertheless, many biological systems exhibit some dédlaysanscription-translation
processes. These delays can be attributed to (i) matesisortation mechanisms in
and out of the nucleus, (ii) binding of TFs, (iii) interagtiof TFs and gene promoter
sites. Even after a perturbation, the system trajectorduglly settle to their respective
steady states. For a system with feedback, the steady atateightly changed. In both
cases the observed dynamics is as a result of the changesimvalges from the Jacobian
matrix (5) which is determined by the individual parametaiues.
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The modeling approach used in this paper provides goodnrdtion for understand-
ing network behavioral dynamics particularly for smaltesd networks. This is illustrated
with the XInR regulon network in which even the simplest of structuresyéald interest-
ingly complex dynamics. The primary reason for limiting gaals to the modeling and
systems dynamics investigations is that experimental worleeded to obtain the basal
and other parameters. Having such information in advanagddvenhance the results.
Nevertheless, with parameter guesses, simulation stpdizéde good information into
the systems behavior.

According to Balsa-canto et al., [12], having powerful nettatical analytic tools
highlight the value for successful study of many biologggdtems. However, such suc-
cess can mainly be attributed to the unrelenting endeawvoiTin-depth understanding
of both computational methods and the biological problefraterest. For the case of
the A. niger regulon, work provides a basis for understanding the behnaMilynamics of
genes and proteins after network perturbation. This willf@ basis for future wet-lab
experiments, particularly with the genes from ¥XieR regulon.

4 Conclusions and outlook

The study shows that thdnR regulon should be considered as a dynamic system instead
of a static system. The work provided insight into the dyrapnoperties of th&XInRreg-
ulon. By studying this system, it has also become clearéittigsgparameters that dictate
most of the dynamics in the regulation properties of the nétvare the transcription and
translation degradation rates.

The dynamics in the regulation properties of the networkdictated mainly by the
transcription and translation degradation rate pararmeddd the D-xylose consumption
profile. This is an observation based on the modeling appreae considered. The
analysis of the network dynamics has provided useful infdrom for futurein vitro ex-
perimental work. Particularly the potential for hypottset@sting basing on this work
and design of related perturbation experiments to gendragecourse data. Thereafter,
techniques for the network structural identification andhpzeter estimation for théinR
regulon can be investigated.

The role played by feedback in the network dynamics was faonidfluence the
expression dynamics of genes and proteins. This meanshihatffect of the feedback
should be considered in the model if there is sufficient supmobiological need. Just
like for most biological systems, this is no doubt an impottaiece of information for
the accurate modeling of biological network.
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