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Abstract Automatically categorizing enzyme into the Enzyme Commission (EC) hierar-
chy is crucial to understand its specific molecular mechanism. Standard machine learning
methods like support vector machine (SVM) and naïve bayesian classifier have been suc-
cessfully applied for this task. However, they treat each functional class independently,
and ignore the inter-class relationships. In this paper, we develop a SVM-based method
for prediction of enzyme function into the EC hierarchical context. Our method with
low computational complexity is a modified version of a structured predictive model—
Hierarchical Max-Margin Markov algorithm (HM3). HM3, which is specially designed
for the hierarchical multi-label classification, has been successfully used in many struc-
tured pattern recognition problems, such as document categorization, web contend clas-
sification, and enzyme function prediction. As input features for our predictive model,
we use the conjoint triad feature (CTF). Our method has been validated on an enzyme
benchmark dataset, the proteins in this benchmark dataset have less than 40% sequence
identity to any other in a same functional class. Finally, for the first three EC digits, the
predictive accuracy and the Matthew’s correlation coefficient (MCC) of our method range
from 78% to 100% and 0.76 to 1 respectively. Therefore we think our new method will
be useful supplementary tools for the future studies in enzyme function prediction.
Keywords: Enzyme function prediction; Conjoint triad feature; Structured hierarchical
output; Support vector machine.

1 Introduction
About half of all the proteins have been characterized as function of enzymatic activity

by various biochemical experiments. In addition, accurate assignment of enzyme function
is a prerequisite of high-quality metabolic reconstruction and the analysis of metabolic
fluxes [1]. It should be noted that, the Enzyme Commission (EC) number is comprised of
four digits separated by periods to classify the functions of enzymes [2]. The first three
digits describe the overall type of an enzymatic reaction, while the last digit represents
the substrate specificity of the catalyzed reaction. Since the first three digits have the
direct relationship with enzyme function, it is in pressing need to develop computational
methods to accurately output the first three EC digits for a given protein.
∗Corresponding author. E-mail: dengnaiyang@cau.edu.cn

The Fourth International Conference on Computational Systems Biology (ISB2010)
Suzhou, China, September 9–11, 2010
Copyright © 2010 ORSC & APORC, pp. 119–127



The straightforward idea is to transfer an EC number between two globally aligned
protein sequences. The accuracy of the direct inference has been reported to significantly
drop under 60% sequence identity [3]. One of the remedies is to develop computational
methods to automatically categorize enzyme into EC hierarchy. Some works concentrate
in predicting the top lever of the EC taxonomy, and then outputting the second and third
digits of EC number. For example, Chou et.al [4] developed a top-down approach for
predicting enzyme functional classes and sub-classes, and the overall accuracy for the
first two layers is higher than 90%. However, they treated functional class independently,
and ignore the inter-class relationships. To address this limitation, some works aim at the
structured prediction of enzyme functions in the whole EC hierarchical taxonomy. For
example, Astikainen et.al. [5] introduced the Hierarchical Max-Margin Markov (HM3)
to output the hierarchical enzyme function, and obtained over 85% accuracy on the four
digits EC number. HM3, which is specially designed for the hierarchical multi-label
classification, generalizes support vector machine (SVM) learning and that is based on
discriminant functions that are structured in a way that mirrors the class hierarchy [7].
It has been successfully used in many structured pattern recognition problems, such as
document categorization [7], web contend classification [8] and so on. However, the
HM3 is time consuming, and unsuitable for the large predictive task. For dealing with the
computational challenge of the HM3, in this article, we reformulate the model of HM3,
and make the number of the variable decrease to the number of the training samples.

Another key problem in predicting enzyme function is to encode a protein as a real-
value vector. In previous studies, the amino acid composition (AAC) representation has
been widely utilized in predicting enzyme family and subfamily class [9]. Owing to lack
of the sequence order information, some modified versions of AAC, such as pseudo amino
acid composition (Pse-AAC) [10] and amphiphilic pseudo-amino acid composition (Am-
Pse-AAC) [11] have been developed. However, both Pse-AAC and Am-Pse-AAC have
some parameters to be determined, and need the properties of physio-chemistry of amino
acids. Recently, a much simple feature encoding method for protein-protein interactions
(PPIs) prediction was proposed [12]. The authors have shown that SVM with the conjoint
triad feature (CTF) outperformed other sequence-based PPI prediction methods. The CTF
considers not only properties of one amino acid but also its vicinal amino acids and treats
any three continuous amino acids as an unit. That is, it contains not only the composi-
tion of amino acids but also sequence-order effect. It has also successfully been used in
prediction of DNA- and RNA-binding proteins [13]. Inspired by these, in this paper, we
introduce the CTF into our structured predictive model, and the better results are expected.

The paper is structured as follows. In Materials and Methods section, we give the
depiction for the CTF and benchmark dataset, and discuss the procedure for formulating
the structure-based predictive model In Results section, we compare our method with the
existing methods. Lastly, we conclude this paper.

2 Materials and Methods
2.1 Materials

The benchmark dataset used to validate the performance of our method is collected
from the literature [4]. The sequences in this dataset have less than 40% sequence identity
to any other in a same functional class. The detail information of this dataset can be
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Figure 1: The toy example for functional hierarchical tree

found in [4]. In addition, for avoiding the extreme subfamily bias, those subfamilies
which contain less than 40 proteins are excluded in our validation. Finally there are six
main functional classes and thirty-four subfamily classes (i.e., twelve for oxidoreductases,
seven for transferases, five for hydrolases, four for lyases, four for isomerases and two for
ligases) in the benchmark dataset.

2.2 Methods
2.2.1 Input feature: CTF

Now let us construct the CTF. Based on the dipoles and volumes of the side chains, the
20 amino acids can be classified into seven classes: {A,G,V}, {I,L,F,P}, {Y,M,T,S},
{H,N,Q,W}, {R,K}, {D,E}, {C}. Thus, a (7× 7× 7 =)343-dimension vector is used
to represent a given protein, where each element of this vector is the frequency of the
corresponding conjoint triad appearing in the protein sequence. The detail description for
the CTF can be found in [12].

2.2.2 Structured SVM
Now we give the detail representation for our structured predictive model. And we

call it as the structured SVM.
Given examples {xi,yi} for i = 1, · · · , l, where xi is a vector in the input space Rn and

yi denotes the corresponding class category taking a value in the output space {1, · · · ,q},
where q is the total number of categories. In addition, the functional hierarchical tree,
representing the relationships among the categories, is also known, where the number of
leaf nodes in the tree is q . A tree with q = 3 is shown in Figure 1.

Suppose that, there are a total of s nodes in the hierarchical functional tree (In Figure
1, s = 5). To predict enzyme functions in the whole EC hierarchical taxonomy, we in-
troduce a structured predictive model—HM3 [6] firstly, and then modified it to reduce its
computational complexity.

Introduce Λ(y) for output y by

Λ(y) = (λ1(y), · · · ,λs(y))T, (1)
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where

λ j(y) =
{

1, i f j ∈ path(y);
0, otherwise, (2)

where path(y) is the category tags for the path from the root to the leaf node y in the
functional hierarchical tree. For example, in Figure 1, path(2) = {2,5}.

The primal and Lagrange dual optimization problem for HM3 are

min
w,b,ξ

1
2
‖w‖2 +C ·

l

∑
i=1

ξi, (3)

s.t. (w ·δΦi(y))> 1−ξi , i = 1, · · · , l,y 6= yi, (4)
ξi > 0 ,δΦi(y) = Φ(xi,yi)−Φ(xi,y) , i = 1, · · · , l, (5)

and

min
α

1
2

l

∑
i=1

l

∑
j=1

∑
Y 6=Yi,Y ′ 6=Y j

αiyα jy′((Λ(yi)−Λ(y)) · (Λ(y j)−Λ(y′)))K(xi,x j)−
l

∑
i=1

∑
y¬yi

αiy ,

(6)
s.t. αiy > 0, i = 1, · · · , l ,y 6= yi, (7)

∑
y6=yi

αiy 6C, i = 1, · · · , l ,y 6= yi, (8)

respectively, where w = (wT
1 , · · · ,wT

s )
T, φ : Rn→H is a mapping from the input space

Rn to a Hilbert space H , and

Φ(xi,yi) =




λ1(yi) ·φ(xi)
· · ·

λs(yi) ·φ(xi).


 . (9)

Noticing that the number of the variables equals l · (q−1), so the problem (6)∼(8)
will be quite large when l and q is large. However, if we can find a label y∗i 6= yi, such that

y∗i = argy 6=yi
min{(w ·Φ(xi,yi))− (w ·Φ(xi,y))}, (10)

the inequality (4) will become (w ·δΦi(y∗i ))> 1−ξi , i = 1, · · · , l. So the Lagrange dual
problem can be reformulated as follows:

min
α

1
2

l

∑
i=1

l

∑
j=1

αiα j((Λ(yi)−Λ(y∗i )) · (Λ(y j)−Λ(y∗j)))K(xi,x j)−
l

∑
i=1

αi, (11)

s.t. αi > 0, i = 1, · · · , l , (12)
αi 6C, i = 1, · · · , l . (13)

The number of the variables for the problem (11)∼(13) decreases to l. Note that, this
problem is reduced to the standard SVM model by replacing the kernel function with
((Λ(yi)−Λ(y∗i )) · (Λ(y j)−Λ(y∗j)))K(xi,x j).

How to choose a suitable y∗i for each input xi? The following theorem may provide
some information for this task.
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Theorem 1. Let k, l is the arbitrary two class labels in leaf nodes, x is a test datapoint,
αiy, i = 1, · · · , l ,y 6= yi are the optimal solutions of the problem (6)∼(8). Then for every
pair of label tags k and l, we have that,

|(w ·Φ(x,k))− (w ·Φ(x, l))|2 ≤ ‖Λ(k)−Λ(l)‖2
s

∑
j=1

(w j ·φ(x))2, (14)

where

(w j ·φ(x)) =
l

∑
i=1

∑
y6=yi

(λ j(yi)−λ j(y))αiyK(xi,x). (15)

Proof: The conclusion can be proved by using Cauchy inequality. 2

From the Theorem 1, we can see that the class labels which belong to the same sub-
family of the test label have the lowest upper bound of |(w ·Φ(x,y))− (w ·Φ(x,y∗))|,
compared to the other label y′ 6= y. So in this paper, y∗i is set to be one of the class
belonging to the same subfamily of yi.

2.3 Implementing predictive model and evaluation criterions
By replacing the kernel function with ((Λ(yi)−Λ(y∗i )) · (Λ(y j)−Λ(y∗j)))K(xi,x j),

the freely available software for SVM implementation: LIBSVM (v.2.88) [14], can be
used for solving our structured SVM model. The RBF kernel function is used here, and
the penalty parameter C and the RBF kernel parameter γ are optimized by grid search
approach with 3-fold cross-validation.

To evaluate the performance of proposed methods, we run the 10 fold cross-validation
procedure. Besides for the accuracy, the Matthew’s correlation coefficient (MCC)[15],
which allows us to overcome the shortcoming of accuracy on imbalanced data [16], is
used to further evaluate the performance of our method.

3 Results
3.1 The results on the benchmark dataset

Here we would like to display the promising performance of the structured SVM by
validating it on a benchmark dataset (see Materials and Methods section). For compari-
son, we also train OET-KNN and AMSVM on the same benchmark dataset. OET-KNN
(Optimized evidence-theoretic k nearest neighbor) classifier was successfully used in top-
down predicting enzyme family and subfamily class [4], while AMSVM (SVM with
arithmetic mean offset) is a modified version of the standard SVM, which is specially
designed for imbalance classification problem [17]. It should be noted that, predicting
enzyme function is an imbalance multi-class classification problem due to the fact that
the number of proteins in each enzyme family and subfamily makes a great difference.
Both OET-KNN and AMSVM predict the top level of EC hierarchy firstly, and then deal
with the second and third level. OET-KNN only reports the predictive accuracy on the
first two EC digits, so the MCC and the corresponding results on the third EC digit for
OET-KNN are not shown in the following subsection.

The accuracies and MCCs for OET-KNN, AMSVM and the structured SVM in pre-
diction of enzyme family classes are listed in Table 1. From Table 1, we can see that
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Table 1: The accuracy and MCC of the current methods on the top level class in the EC
hierarchy

Family name
OET-KNN AMSVM Structured SVM

Accuracy MCC Accuracy MCC Accuracy MCC
EC1 : Oxidoreductases 0.89 − 0.92 0.89 0.94 0.91

EC2 : Trans f erases 0.93 − 0.94 0.92 0.96 0.93
EC3 : Hydrolases 0.94 − 0.96 0.93 0.97 0.95

EC4 : Lyases 0.83 − 0.86 0.85 0.88 0.86
EC5 : Isomerase 0.81 − 0.85 0.84 0.87 0.85

EC6 : Ligases 0.95 − 0.96 0.89 0.97 0.90

AMSVM specially designed for imbalance problem performs well than OET-KNN, and
the structured SVM outperforms AMSVM not only on the accuracy but also on the MCC
for all six enzyme main families. These results suggest that the more properties of dataset
itself are incorporated into the predictive model, the more better results can be expected.

We use box plots to exhibit the variability of predictive accuracy for comparable meth-
ods among enzyme subfamily classes and sub-subfamily classes (Figure 2,3). The box
plots for the variability of MCC are shown in Figure 4. For the second EC digit (enzyme
subfamily class), the accuracy of OET-KNN ranges from 50% to 100%, and AMSVM
makes the accuracy range from 75% to 95%. Although the median of accuracy for OET-
KNN is larger than that for AMSVM, the difference between them is about 3% and the
variation range of AMSVM is less than that of OET-KNN. It implies that AMSVM is
more stable than OET-KNN, and have competitive performance of OET-KNN. While the
minimum value of accuracy for the structured SVM is about 80%, and the maximum
value reaches 100%. Furthermore, the structured SVM outperforms AMSVM and OET-
KNN not only on the range of accuracy waved but also on the median of accuracy. For
the third EC digit (enzyme sub-subfamily class), except for EC6 sub-subfamily class, the
structured SVM outperforms AMSVM and OET-KNN not only on the range of accuracy
waved but also on the median of accuracy. For both the second and the third EC digits,
although the length of the MCC box for the structured SVM seems longer than AMSVM,
but the structured SVM has a much higher MCC than AMSVM. All these results imply
that the performance of the structured SVM is superior to those of the existing methods,
which do not take the hierarchical structure of the dataset into account.

3.2 Comparison with other structure-based methods
In [5], besides HM3, the authors have been introduced another structure-based pre-

dictive model—Maximum Margin Regression algorithm (MMR) [18] to output enzyme
function. The MMR generats one-class SVM to structured output domain. It has the
same the number of variables as our structured SVM and can be implemented easily. On
a gold standard enzyme dataset containing 3090 proteins, for the all individual EC dig-
its, the MMR achieved the best accuracy, while HM3 achieved the nearly same results,
and the HM3 obtains the best F1 scores and MMR comes close second. When predict-
ing sub-subfamilies, the HM3 obtained the over 79% F1 score , and obtained over 89%
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Figure 2: The box plots for accuracy on enzyme subfamily in EC1,EC2,EC3,EC4,EC5,EC6 re-
spectively.
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Figure 3: The box plots for accuracy on enzyme sub-subfamily.

F1 score when predicting the subfamilies and the main families [5]. Like the MCC, F1
score can avoid the bias due to the imbalance problem. In this work, our structured SVM
has obtained the over 80% F1 score in predicting enzyme sub-subfamilies, and the over
90% F1 score in predicting subfamilies and the main families. These results suggest that
our structured SVM has the competitive performance with the HM3, and may outperform
other existing low costly structure-based method, the MMR.

4 Conclusion
In this paper, we propose a structure-based method—the structured SVM for predict-

ing enzyme function in EC hierarchy. The structured SVM is a modified version of HM3

and can be easily implemented for the real-world large scale problem. The structured
SVM has been validated on a benchmark enzyme dataset, where the best MCC and accu-
racy of 91% and 98% are obtained in predicting the main families. Furthermore, we ob-
tain over 95% and 98% MCC in predicting subfamilies and sub-subfamilies respectively.
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Figure 4: The box plots for MCC on enzyme subfamily (the top) and sub-subfamily (the down)
respectively.

The predictive results suggest that for predicting the enzyme function in EC hierarchi-
cal taxonomy, the structured SVM performs much better than existing methods which do
not take account of hierarchical relationship among enzyme categories. In addition, the
structured SVM has exhibited the competitive performance with the HM3, and the better
predictive results than other existing low costly structured-based method (MMR) in struc-
tured output prediction of enzyme function. Therefore we think our new method will be
useful supplementary tools for the future studies in enzyme function prediction.
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