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Abstract Methyl-CpG binding protein 2 (MeCP2) was identified as both activator and repressor
in Rett syndrome. Numerous genes in the hypothalamus expressed differentially under the regu-
lation of MeCP2. Experimental results indicated that only a small fraction of genes were directly
bound by MeCP2. The transcriptional regulatory networks from the source MeCP2 to its down-
stream genes were built to reveal the mechanism of molecular processes and signal transduction.
Information mining approaches, including database search, literature mining, interaction predic-
tion, and computational inference were integrated to maximize the discovery due to the limitation
of prior knowledge of MeCP2. Hub cofactors, whose binding sites were enriched in the MeCP2
activated and repressed groups, comparing with that of the whole genome, were finally identified
by using novel linear programming algorithm. The network topology analysis results proved the
hub cofactors were important for network structure.
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1 Introduction
Rett syndrome (RTT) is a neurodevelopmental disorder which is caused by mutation in

the gene encoding the transcriptional repressor methyl-CpG binding protein 2 (MeCP2).
A recent study indicated that MeCP2 regulates the expression of a wide range of genes
in the hypothalamus and that it can function as both an activator and a repressor of tran-
scription (see [1]). Gene expression profiles analysis in MECP2-Tg (overexpress the gene
MECP2 under the control) and Mecp2-null (knock out the MECP2 under the control) gen-
erated the list of MeCP2 activated and repressed targets. However, not all the activated
or repressed genes are direct target of MeCP2, and they will be regulated by other cofac-
tors bound to MeCP2. The discovery of transcriptional regulatory network from MeCP2
to its downstream genes advances our better understanding of mechanisms of molecular
processes and signal transduction, and is of particular importance in heuristic research of
the disease from a nosogenetic perspective.

In the past fewer years, numerous approaches were contributed to the transcriptional
regulatory network inference from high-throughput profiles. The output of high dimen-
sional data, like gene expressions, can be regarded as the downstream products of some
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specific regulatory signals driven through an interacting network. With the growth of vast
databases, multiple method integrated methodologies sprung up and potentially provided
system level discussion regarding the underlying mechanism. Protein-protein interaction
and protein-gene interaction were involved in the network construction due to the consen-
sus that genes in the same pathway or having the similar functions are linked with high
possibility in the network; see [1] and [2] for instance.

A major challenge posed in the construction of transcriptional regulatory network is
to vigorously maximize the information of the hidden dynamics of the regulatory sig-
nals. Although MeCP2 was recognized as a key contributor to neurological disease, lim-
ited information is included in the existing databases in regards to transcriptional factors,
like TRANSFAC and Genomatix. Therefore, network construction approaches, which
strongly depend on prior knowledge of the network elements or need well known net-
work structure, will not take effect. In the study of Chahrour ([3]), more than 2000 genes
were identified as being activated by MeCP2 and over 300 genes were repressed MeCP2
targets. Finally, the authors performed quantitative real-time reverse transcription poly-
merase chain reaction to validate parts of the gene expression changes, and only fewer
genes were directly bound by MeCP2. The regulatory signals, like how the rest genes
were regulated by MeCP2, and if there exist some key cofactors in regulatory network,
attract us for further analysis to explore the regulatory mechanisms.

As mentioned above, the known information regarding MeCP2 is a little. To max-
imally discover the regulatory mechanisms of MeCP2 and its target genes, an informa-
tion mining approach is employed in this article. The methodology is an integration of
database search, literature mining, interaction prediction, and computational inference.
Given the genes that validated as MeCP2 activated targets or repressed targets, candidate
cofactors of the transcriptional regulatory network were listed according to the transcrip-
tion factor binding sites search algorithm. Protein-protein interactions and protein-DNA
interactions derived simultaneously from database, literatures and computational predic-
tions were involved in the network building. A linear programming based algorithm was
developed to heuristically infer the pathways from MeCP2 to its downstream genes.

The whole flowchart (Fig.1) of the network construction filled in the gap between
MeCP2 and its target genes, and as much information as possible was used to reveal the
latent dynamics of the regulatory signals. Especially, the incorporation of the direction
information, i.e. protein-DNA interactions, well interpreted that how MeCP2 finally regu-
lates the target genes. The linear programming based method used here provided a choice
to search the optimal pathways that transmit the maximal information from the source
MeCP2 to the target genes. The transcriptional regulatory networks for both the activated
MeCP2 targets and the repressed MeCP2 targets exhibit hierarchical structures, which
shed light on the selection of the potentially some hub transcription factors in the whole
network. The hub transcription factors were inferred based on the results starting from the
validated genes, and then enrichment analyses were performed by comparing the binding
sites frequencies between the whole bunches of target genes identified by microarrays
expression analysis and the whole genome. The significantly lower p-values of the pro-
portion tests indicated that the hub transcription factors were indeed enriched. Most of the
cofactors found in the network are brain development related or neuronal function related,
and it may guide the therapeutic strategies for clinical studies.
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Figure 1: The flowchart of transcriptional regulatory network discovery.

2 Data-set & Primary Results
2.1 The data-set

Microarray analysis using hypothalamic RNA from four MeCP2-Null males, four
MeCP2-Tg males, and their respective wild-type (WT) littermates at 6 weeks of age using
the Affymetrix Mouse Exon 1.0 ST microarray (see [4] and [5]), were performed. Given
that MeCP2 functions as a transcriptional repressor in vitro, 2184 genes were activated by
MeCP2 and 377 were repressed. Among the genes with alterations in the expression, 66
genes went to the further validation; of these, 46 genes were activated MeCP2 targets and
20 were repressed targets (P < 0.05). ([6]) For the further analysis, the human homolog
genes to the selected mouse genes were used since there are very few protein-protein
interactions regarding mouse data. The numbers of mouse genes and the corresponding
human homolog genes were listed in Table 1.

Table 1: Numbers of mouse genes and the corresponding human homolog genes.

Mouse Gene Human Homolog Gene
Activated (All/Validated) 2184/46 1832/42
Repressed (All/Validated) 377/20 284/20

The Whole Genome 17213 14488

2.2 Primary Results
2.2.1 The Generation of Candidate Transcription Factors

The analyses of the two groups of genes, MeCP2 activated and repressed targets,
followed the same methodologies. The upstream promoter regions of genes that activated
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by MeCP2 were significantly enriched in CpG islands ([3]), which guided us to search
potential binding sites based on the upstream sequence with length of 5-kb. Transcription
factors binding sites were extracted from the database Genomatix MatInd, which employs
an alignment algorithm based on the method described by Cartharius et al. ([7]), and
creates the nucleotide distribution matrix by counting the bases at each position of the
alignment. We restricted the core similarity (the highest conserved position of the matrix)
at 1.0, and the matrix similarity was chosen as optimal (thresholds that minimize false
positives for each individual matrix are supplied with its library). All the single matrixes
were finally mapped to their corresponding transcription factors.

2.2.2 Protein-protein Interactions and Protein-DNA Interactions
Once we generated the list of candidate TFs, the interactions among them were forced

to uncover the potential relationships between MeCP2 and other TFs. Interactions from
the major human protein-protein interaction database HPRD ([8]) and the database of
Genomatix MatBase were collected. For protein-DNA level, interactions were extracted
from the database BIND ([9]). However, the direct interactions between MeCP2 and the
candidate TFs were very few; only two TFs interact with MeCP2. Directly use the infor-
mation from database probably narrow the discovery of the true mechanisms of MeCP2;
therefore, prediction approach was integrated in the construction.

A lot of works have been devoted to the PPI prediction in the network studies. Most
existing methods relied on the information about protein homology or interaction marks
of the protein partners, which could not take effects for MeCP2 related prediction since
current databases only covered a small fraction of MeCP2 related knowledge. This moti-
vated us to employ a method that only amino acid sequences were requested because it is
virtually axiomatic that "sequence specifies structure" might be sufficient to estimate the
interacting propensity between two proteins for a specific biological function ([10] and
[11]).

The PPI prediction approach used here followed the work of Shen ([11]). In [11],
a machine learning method based on a support vector machine (SVM) combined with a
kernel function and a conjoint triad feature abstract was developed for the prediction of
PPIs based only on the primary sequences of proteins. The web-based tool Sequence-
based Protein Partners Search (SPPS) for rapidly predicting potential partners for a given
protein sequence is available at [12]. The accuracy of human PPIs prediction can be
reached at 83.9% as claimed in their website.

The algorithm returns an interacting probability of each protein pair. To reduce the
overfitting problem, we only remained the interacting pairs with probability larger than
0.95. Finally, hundreds of predicted PPIs were used in the further analysis.

2.2.3 Transcriptional Regulatory Network Construction by Linear Programming
The goal of our study is to construct a network which reveals the regulatory mecha-

nism of MeCP2 through its downstream genes. Here we developed a novel computational
approach based on linear programming algorithm to build the network. We search the
optimal pathways from the source (MeCP2) to its targets (activated genes or repressed
genes). This algorithm heuristically guided the identification of biologically meaning-
ful pathways. Each link between two nodes was assigned a weight according to expres-
sion data or the protein-DNA interaction frequencies (details were exhibited in METHOD
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part). Figure 2 and Figure 3 are the two transcriptional regulatory networks of MeCP2
activated group and repressed group, respectively.

Figure 2: Transcriptional regulatory network for MeCP2 activated targets.

Figure 3: Transcriptional regulatory network for MeCP2 repressed targets.

The above two figures hierarchically displayed how MeCP2 regulates the downstream
genes. Some potential cofactors were identified by using our algorithm, and their names
and functions were listed in Table 2. More interesting, we found that in the activated
group, ZIC2 was recognized as a hub cofactor; while in the repressed group, AR plays
the same role. Notice that in [3], the authors mentioned over 2000 genes were activated
by MeCP2, and about 300 genes were repressed by MeCP2. We then analyzed the up-
stream sequences of those genes to check if the binding sites of the hub cofactors were
enriched. The frequency of binding sites of each extensive group was generated by Geno-
matix MatInd. Two group proportion tests were performed based on the following null
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hypothesis H0 against alternative hypothesis H1,
H0: Comparing with the whole genome, the binding sites are enriched in the activated

(repressed) group.
H1: Comparing with the whole genome, the binding sites are not enriched in the

activated (repressed) group.
The comparison results were shown in Table 3. The significantly low p-values the

binding sites of hub cofactors were indeed enriched in the activated or repressed group,
respectively.

Table 2: Celluar functions of the cofactors in both activated and repressed group.

Cofactors in Activated Group Function
ZIC2 Brain Development
LHX6 Brain Development
LHX5 Cerebellum Development
IRX3 Regulation of Neuron Differentiation
DLX2 Brain Development

DEUROD1 Neurogenesis
Cofactors in Repressed Group Function

AR Androgen Receptor
DLX3 Endocrine System Development
ERS1 Neuroprotection
JUN Positive Regulation of Smooth Muscle

Cell Proliferation
SMAD1 Positive Regulation of Osteoblast Differentiation
POU3F3 Nervous System Development

SOX5 Cartilage Development

Table 3: Binding sites enrichment analysis of the two hub cofactors.

ZIC2 AR
Extensive Activated 92% 63%
Extensive Repressed 73% 80%
The Whole Genome 79% 69%

p-value 3.36e-40 3.59e-5%

3 Methods
To infer the pathway from MeCP2 to its downstream genes, we develop a novel algo-

rithm based on linear programming algorithm to search the optimal paths in the network
when given the source s (MeCP2) and targets t (downstream genes). The major contribu-
tion is that the information flow from the source to the target was considered. We built
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the model to set the balance condition that can ensure that the amount of the input flow
equals the amount of the output flow at each node, except the source node and the target
node.

3.1 The Linear Programming
For each pair of nodes (i, j) in the network, we define the four variables Oi j, O ji, Ii j

and I ji as following
Oi j, the output flow at i from i to j,
O ji, the output flow at j from j to i,
Ii j, the input flow at j from i to j,
I ji, the input flow at i from j to i.
Let E(i, j) denote the edge between nodes i and j. The search approach aims at

solving the linear programming model

min∑
j
−I jt (1)

subject to

∑
k

Osk = I0 for the output flow at s (2)

∑
i

Iis = 0 for the input flow at s (3)

∑
j

Ot j = 0 for the output flow at t (4)

∑
i

Ii j ≥∑
k

O jk for each node j except s and t (5)

Oi j ≥ 0 for each edge E(i, j) (6)
Ii j ≥ 0 for each edge E(i, j) (7)

Ii j = Di jOi j for each edge E(i, j) (8)
Oi j ≤Ci j for each edge E(i, j) (9)

Oi j = 0 for each e (i, j) ∈ T (10)

where I0 is the total amount of output flow at the source node. Ci j represents the capacities
on the edge E(i, j). Di j denotes the dissipation index on the edge E(i, j) and T refers to the
set of interactions with directions (protein-DNA interactions). Formulation (1) illustrates
that the objective is to maximize the received input flow at the target node. Equations
(2) and (3) determine that the source node only sends information. And equation (4)
ascertains that the target node does not send out any information flow. Equation (5) shows
that the amount of input flow has to be larger than or equal to the amount of output flow
at each internal node (nodes except the source and target). Inequations (6) and (7) require
the flow to be nonnegative. Equation (8) defines that the flow from i to j is dissipated, in
which part of the output flow Oi j at i was converted into the input flow Ii j at j according to
the dissipation index Di j, defined as the absolute value of Pearson correlation coefficient

Transcriptional Regulatory Network Discovery via Information Mining Approach 115



of gene i and j based on gene expression data. Inequation (9) confines the output flow on
each edge cannot exceed the capacity limit of that edge. The linear programming model
(1)-(9) does not consider the direction of the interactions. So it is based on an undirected
network, which can be constructed from the large-scale protein-protein interactions and
gene expression data. However, in biological systems, most interactions have orientations.
Thus, constraints that confine the directions of flows on interactions should be added. The
formulation is given by equation (10). Equation (10) restricts the flow only along the
direction of the edge. The reverse flow should be zero.

3.2 The Search Algorithm
The linear programming model (1)-(10) infers the pathways given the source, the tar-

get and the whole network G(V,E,D,C,T ), where V is the set of proteins and DNAs,
E is the set of protein-protein interactions and protein-DNA interactions, D defines the
dissipation indices on each edge, C defines the capacities of each edge, and T defines
the orientations of the interactions. V , E and T can be easily constructed from the large-
scale protein-protein and protein-DNA interactions. D is defined by the absolute value of
correlation coefficients determined by using the expression values of genes ([13]-[16]).
C cannot be assigned that easily, because now there is no sufficient experimental infor-
mation available. We design a stochastic searching algorithm in this study to bypass the
assignment problem of C in practice. The algorithm is described as follows:
(i) For k = 1, set C1 large enough for each edge (e.g. input for each edge), solve the linear
programming model (1)-(10) with parameters G(V,E,D,C,T ) and get the solution X1. X1
is a simple path from the source to the target.
(ii) For k = i (i>1), randomly select one of the edges of Xi− 1 and denote the selected
edge as p. Let Ci = Ci−1 , set the capacity of p as zero and update Ci. Solve the linear
programming model (1)-(10) with parameters G(V,E,D,C,T ) and get the solution Xi.
(iii) Repeat (ii) until k reaches the allowable times K.
(iv) X1, · · · , Xk are all simple paths. Assemble X1, · · · , Xk will get a subnetwork connecting
the source and the target. Set the subnetwork as the last solution to the original problem
defined by (1)-(10) in which C is unknown.

The idea behind the algorithm is to search the optimal path at first, then to search the
suboptimal paths after blocking the optimal path, and repeat this procedure. Saturation
is simulated through blocking the available paths. This algorithm is likely to identify
the optimal path from the source to the target. The difference lies in the simulations of
saturation through blocking.

Due to the stochastic nature of the algorithm, it will run several times, e.g. N times,
and then half of the solutions with the lower objective values are selected as the candidate
pathways from the source to the target.

There are totally three parameters in this searching algorithm. The first parameter is
I0, which represents the amount of information flow the source sends out. The result is
independent of the value of I0, as long as it is positive. In this study we set I0 to be 1.
The second parameter is K, the number of zeros in C, which measures the complexity
of the inferred pathways. The larger K, the more complicated is the predicted pathway.
A pathway predicted with a smaller K is more significant. The pathway predicted with
lager K is more complete and includes the pathway predicted with the smaller . The third
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parameter is N, which represents the number of repetitions to counteract the random effect
in the stochastic search. N is positively related to the number of edges of the predicted
pathway.

4 Discussion and Conclusion
To better understand the importance of the hub cofactors and depict the properties of

a network, the network topologies were considered in this section. The network diameter
defined as the average minimum distance between pairs of nodes. Once remove the hub
cofactors in the two regulatory networks, respectively, the network diameters increase
(see Table 4).

Table 4: Binding sites enrichment analysis of the two hub cofactors.

ZIC2 AR
With 6 7

Without 11 10

In this article, transcriptional regulatory network revealing the mechanism of the key
contributor MeCP2 was considered in RTT study. In view of the limitation study of
MeCP2, we used information mining method to maximize the potential protein-protein
interaction and protein-DNA interaction. Database search, literature mining, and compu-
tational prediction were adopted, and finally we developed a novel algorithm to search
the optimal pathways from the source MeCP2 to its downstream genes. In both MeCP2
activated and repressed groups, two hub cofactors, whose binding sites were enriched in
the extensive groups, were finally identified. The network topology analysis indicated that
the hub cofactors play the important roles because the network diameters will significantly
increase once they were removed.
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