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Abstract This paper focuses on the feature selection in classification via a new version of support
vector machine (SVM) named p-norm support vector machine (0 < p < 1). Different from the
2-norm in the standard linear SVM, the p-norm of the normal vector of the decision plane is used
which leads to more sparse solution. By using the successive linear algorithm, we can get an ap-
proximate local optimal solution to our p-norm SVM. In addition, the lower bounds for the absolute
value of nonzero components in every local optimal solution is established, which provides theo-
retical direction for the elimination of zero components in any numerical solution. The numerical
experiments show that the p-norm SVM is effective in selecting relevant features, compared with
the popular 1-norm SVM, 0-norm SVM and support vector machine-recursive feature elimination
based (SVM-RFE).

1 Introduction
Feature selection is a problem pervasive in many applications of data mining. Restrict-

ing the input space to a small subset of input variables has obvious benefits in terms of
data storage, computational requirements, and cost of future data collection. Furthermore,
it often provides better data or model understanding. Especially, the classical feature se-
lection in biology is to choose the genes that are relevant to some disease, which can be
helpful for drug design and disease treatment. This paper focuses on feature section in
classification via a new version of support vector machine (SVM) and its application to
the gene selection in biology.

Several methods have been proposed for feature selection in the SVM framework.
Guyon et al. (2002) [1] proposed support vector machine-recursive feature elimination
based (SVM-RFE). The SVM-RFE method ranks all the features according to some score
function and eliminates several features with the lowest scores in each iteration. This pro-
cess is repeated to reach the highest classification accuracy. The performance of SVM-
RFE is sensitive to the number of features eliminated in each iteration, different numbers
lead to different accuracy and different feature subset. In addition, [3] proposed the 1-
norm SVM, which imposed the absolute value penalty of the normal vector of the sepa-
rating plane. In order to get more sparse classifiers, [4, 5] proposed the feature selection
∗This work is supported by the Key Project of the National Natural Science Foundation of China (No.

10631070), the National Natural Science Foundation of China (No.10971223)
†Corresponding author. E-mail: zhangchunhua@ruc.edu.cn
‡Corresponding author. E-mail: dengnaiyang@cau.edu.cn

The Fourth International Conference on Computational Systems Biology (ISB2010)
Suzhou, China, September 9–11, 2010
Copyright © 2010 ORSC & APORC, pp. 101–108



via concave minimization (FSV), which can automatically select features by the 0-norm
penalty of the number of features. Different from the above methods, another related
method, called as SCAD SVM was proposed by Zhang [7] which formulated the SVM
as a regularization problem with smoothly clipped absolute deviation(SCAD) penalty on
the directional vector of the separating plane. The inconvenience of using SCAD SVM is
that there are too many parameter in the model. Another revision of SVM was considered
by Wang [8], he proposed a hybrid huberized support vector machine (HHSVM) where
the huberized hinge loss function and the 1-norm penalty are applied. HHSVM encour-
aged the highly correlated features to have similar weights and to be selected or removed
together. But the HHSVM was not so sparse, it selected more features than 1-norm SVM.

Recently, p-norm (0 < p < 1) attracted great attention in the optimization framework,
the idea that using p-norm can find spare solution is considered in [9, 10, 11, 12]. This
paper proposes p-norm support vector machine, which replaces the 2-norm penalty by
the p-norm (0 < p < 1) penalty in the objective function of the primal problem in the
standard linear SVM. The p-norm SVM conducts feature selection and classification si-
multaneously. However, there are two difficulties in solving p-norm SVM model: (i). It is
impossible to solve the primal problem via its dual problem and the primal problem itself
is hard to be solved, because it is neither differentiable nor convex; (ii). Feature selection
needs to find the nonzero components of the solution to the primal problem. However,
usually algorithms can only provide an approximate solution where nonzero components
in the solution can not be identified theoretically. For example, if the numerical results
show that the solution have many entries with small values, can we consider these entries
to be zero entries?

For the difficulty (i), the primal problem is equivalent to a differentiable one and
solved by a successive linear approximation algorithm (SLA) ([2]), which yields a sta-
tionary point of the primal problem. Furthermore, for the difficulty (ii), the lower bounds
for the absolute value of nonzero entries in every local optimal solution is established,
which can eliminate zero entries in any numerical solution. Lastly, the performance of
p-norm SVM is illustrated on both of the simulation datasets and real datasets. Experi-
mental results show that p-norm SVM can select a small subset of relevant features with
good prediction performance, compared with 1-norm SVM and 0-norm SVM. Especially,
according to our results on two real microarray datasets, most of the genes that have been
proved to be really relevant to the cancers in other literatures, are chosen by p-norm SVM,
which indicates that our method is very effective in the genes selection.

Now we describe our notation. All vectors are column vectors unless transposed to a
row vector by a super script >. For a vector x in Rn, [x]i(i = 1,2, · · · ,n) denotes the i-th
component of x. |x| denotes a vector in Rn of absolute value of the components of x. ‖x‖p

denotes that (|[x]1|p + · · ·+ |[x]n|p)
1
p . Strictly speaking, ‖x‖p is not a general norm when

0 < p < 1, but we still follow this term p-norm, because the forms are same except that
the values of p are different. ‖x‖0 is the number of nonzero components of x. For two
vectors x ∈ Rn and y ∈ Rn, (x · y) denotes the inner product of x and y.

This paper is organized as follows. In section 2, the p-norm SVM for feature section
is introduced. In section 3, the SLA is proposed to solve p-norm SVM. In section 4, the
lower bounds for the absolute value of nonzero entries in any local optimal solution of p-
norm SVM is established. In section 5, numerical experiments are given to demonstrate
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the effectiveness of our method. We conclude this paper in section 6.

2 p-norm support vector machine
For feature selection, p-norm SVM is an embedded method in which training data are

given to a learning machine, which returns a predictor and a subset of features on which
it performs predictions. In fact, feature selection is performed in the process of learning.

Consider the classification problem with the training set T is given by

T = {(x1,y1), · · · ,(xl ,yl)}, (1)

where x j ∈ Rn and y j ∈ {1,−1}( j = 1, · · · , l). The feature vector

gi = ([x1]i, [x2]i, · · · , [xl ]i)
T,(i = 1, · · · ,n) (2)

denotes the values of i-th feature in all inputs.
Replacing 1

2‖w‖2
2 in the objective function of the standard SVM by ‖w‖p

p, we have

min
w,b,ξ

‖w‖p
p +C

l

∑
i=1

ξi , (3)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (4)
ξi ≥ 0 , i = 1, · · · , l , (5)

then, the linear p-norm support vector machine is described as follows:
Algorithm1: p-norm SVM

(1) Select the parameters C(C > 0) and p(0 < p < 1); using the set given by (1),
construct the primal problem (3)-(5);

(2) Find the global solution (w∗,b∗,ξ ∗) to the problem (3)-(5);
(3) Select the feature set: {i|[w∗]i 6= 0, i = 1, · · · ,n};
(4) Construct the decision function f (x) = sgn((w̃∗ · x̃)+ b∗), where the components

of w̃∗ are nonzero components of w∗ and the components of x̃ are also corresponding to
nonzero components of w∗.

Note that, in the Algorithm 1, there are two difficulties (i) and (ii) that have been
addressed in Section 1, so the following sections will consider them respectively.

3 The SLA algorithm for the problem (3)-(5)
Consider the problem (3)-(5), the objective function is not differentiable, because of

the absolute value in the first item. In order to make this problem smooth, the variable
v=([v]1, · · · , [v]n)> is introduced to eliminate the absolute value from the problem (3)-(5),
which leads to the following equivalent problem:

min
w,b,ξ ,v

‖v‖p
p +C

l

∑
i=1

ξi , (6)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (7)
ξi ≥ 0 , i = 1, · · · , l , (8)
−v≤ w≤ v, (9)
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where, ‖v‖p
p = [v]p1 + · · ·+ [v]pn due to the constraint (9). Furthermore, we note that the

problem (6)-(9) is differentiable, but not convex. In fact, it is the minimization of a con-
cave objective function over at polyhedral set. Even though it is difficult to find a global
solution to this problem, a fast successive linear approximation (SLA) algorithm ([2]) ter-
minates finitely at a stationary point which satisfies the necessary optimality condition for
problem (6)-(9). For convenience, we state the SLA algorithm below.
Algorithm2: SLA for the problem (3)-(5)

(1) Select the parameter C (C > 0) and p (0 < p < 1), start with a random (w(0), b(0),
ξ (0), v(0)) and let k = 1;

(2) Find the solution (w(k),b(k),ξ (k),v(k)) to the following linear programming:

min
w,b,ξ ,v

p(v(k−1))p−1v+C
l

∑
i=1

ξi , (10)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (11)
ξi ≥ 0 , i = 1, · · · , l , (12)
−v≤ w≤ v, (13)

where (v(k−1))p−1 = ([v(k−1)]p−1
1 , · · · , [v(k−1)]p−1

n )>;

(3) If |p(v(k))p−1(v(k)− v(k−1))+C ∑l
i=1(ξ (k)−ξ (k−1))|= 0, then let w∗ = w(k),b∗ =

b(k),ξ ∗ = ξ (k) and stop; otherwise, let k = k+1 and go to step 2.

4 The Lower bounds for nonzero components in solu-
tions

Using a similar strategy in [9], we get the following theorem 1, which can be used to
identify nonzero components in any local optimal solutions to the problem (3)-(5), even
though the Algorithm 2 can only find the approximate local optimal solution.
Theorem 1 For any local optimal solution (w∗,b∗,ξ ∗) to the problem (3)-(5), if [w∗]i ∈
(−Li,Li), then [w∗]i = 0(i = 1,2 · · ·n), where Li = ( p

C
√

l‖gi‖2
)

1
1−p and gi is defined in (2).

Proof: Suppose ‖w∗‖0 = k. Without loss of generality, let w∗ = ([w∗]1, [w∗]2, · · · , [w∗]k,
0,0 · · ·0)T and z∗ = ([w∗]1, [w∗]2, · · · , [w∗]k)T . For the new training set T̃ = {(x̃1,y1), · · · ,
(x̃l ,yl)}, where x̃i = ([xi]1, [xi]2, · · · , [xi]k)

>,we consider the optimization problem

min
zzz,b,ξξξ

‖z‖p
p +C

l

∑
i=1

ξi , (14)

s.t. yi((z · x̃i)+b)≥ 1−ξi , i = 1, · · · , l , (15)
ξi ≥ 0 , i = 1, · · · , l . (16)

The Lagrange function of (14)-(16) is: L(z,b,ξ ,α,ζ )= ‖z‖p
p+C ∑l

i=1 ξi−∑l
i=1 αi(yi(zT x̃i+

b)−1+ξi)−∑l
i=1 ζiξi. According to the KKT condition, if (z∗,b∗,ξ ∗) is a local optimal
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Table 1: Simulated datasets

Datasets Methods No. of selected Percent of relevant Average Precision Sensitivity
features features(%) error(%)

n = 20 p-norm SVM 3.34 89.8 3.86 0.948 0.954
0-norm SVM 5.79 51.8 3.88 0.956 0.954
1-norm SVM 15.7 28.4 5.39 0.937 0.946

SVM-RFE 4 75 11.2 0.849 0.892
n = 50 p-norm SVM 4 74.1 4.39 0.944 0.959

0-norm SVM 4.2 72.1 3.18 0.965 0.962
1-norm SVM 21.7 13.8 7.41 0.915 0.921

SVM-RFE 5 60 18.5 0.784 0.791

solution of (14)-(16), then

∇zL(z,b,ξ ,α,ζ ) = p|z∗|p−1sgn(z∗)−
l

∑
i=1

αiyix̃i = 0, (17)

∇ξiL(z,b,ξ ,α,ζ ) =C−αi−ζi = 0, i = 1, · · · , l, (18)
ζi ≥ 0,αi ≥ 0, i = 1, · · · , l. (19)

By (17), we have p|z∗|p−1=|∑l
j=1 α jy j x̃ j|, which is equivalent to p|[z∗]i|p−1=[|∑l

j=1 α jy j x̃ j|]i
=|(α1y1 · · ·αlyl)gi|, i = 1, · · · ,k. By the Cauchy-Schwarz inequality, (18) and (19), we

have |(α1y1 · · ·αlyl)gi| ≤ ‖(α1y1 · · ·αlyl)‖‖gi‖≤C
√

l‖gi‖. Therefore, |[z∗]i| ≥ ( p
C
√

l‖gi‖
)

1
1−p ,

which means that for any local optimal solution (w∗,b∗,ξ ∗) of (3)-(5), we have [w∗]i ∈
(−Li,Li)⇒ [w∗]i = 0, i = 1,2, · · · ,n.�

According to Theorem 1, we can identify the nonzero components of the local optimal
solution to (3)-(5). Based on the Algorithm 2 and the Theorem 1, the new algorithm is
established as follows:
Algorithm 3

(1) Select the parameters C(C > 0) and p(0 < p < 1); using the set given by (1),
construct the optimization problem (3)-(5);

(2) Using the Algorithm 2 to get the local optimal solution (w∗,b∗,ξ ∗) to (3)-(5);

(3) Compute Li = ( p
C
√

l‖gi‖
)

1
1−p (i = 1, · · · ,n) and select the feature set: {i|[w∗]i| >

Li, i = 1, · · · ,n};
(4) Construct the decision function f (x) = sgn((w̃∗ · x̃)+ b∗), where the components

of w̃∗ are nonzero components of w∗ and the components of x̃ are also corresponding to
nonzero components of w∗.

In the following section, our experiments are conducted according to the algorithm 3.

5 Numerical experiments
In this section, some experiments on simulated datasets and real datasets are con-

ducted, by comparing p-norm SVM with 0-norm SVM, 1-norm SVM and SVM-RFE.

Simulated datasets
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Table 2: Real datasets

Datasets No. of Methods No. of selected Average Precision Sensitivity
features features errors(%)

Arcene 10000 p-norm SVM 6.5 17.6 0.877 0.764
0-norm SVM 27.4 24.6 0.709 0.736
1-norm SVM 12.9 19.8 0.844 0.763

SVM-RFE 70 16.6 0.797 0.836
Colon 2000 p-norm SVM 4.6 16.1 0.75 0.811
caner 0-norm SVM 13.2 14.5 0.760 0.814

1-norm SVM 15.6 13.5 0.773 0.886
SVM-RFE 64 14.5 0.771 0.795

Prostate 12600 p-norm SVM 8.3 2.9 0.976 0.971
cancer 0-norm SVM 10.5 4.7 0.947 0.941

1-norm SVM 17.9 3.5 0.962 0.97
SVM-RFE 50 5.1 0.961 0.934

We generate the simulated data set using the method described in [18]
• Independently generate 100 stochastic vectors xi ∈ Rn, i = 1,2, · · · ,100 and [xi] j ∼

N(0,1), j = 1,2, · · · ,n;
• The outputs are determined by the hyperplane g(x) = 4[x]1 + 2[x]2 + 4[x]3− 0.6,

which means that the output of an input xi is "+1" if g(xi)≥ 0 and is "-1" if g(xi)< 0.
We consider the dimensionality of the inputs n = 20,50. The experiments will repeat

100 times and the average test errors are computed. Note that, in Algorithm 3, the perfor-
mance of p-norm SVM depends on the parameters C and p. Therefore, C and p should
be adjusted properly. In our experiments, the best value of C ∈ [2−5,25] and p ∈ (0,1) is
chosen by ten-fold cross validation.

According to Algorithm 3, 100 experiments are conducted for every datasets. Note
that, in Algorithm 3, the performance of p-norm SVM depends on the parameters C and
p. Therefore, C and p should be adjusted properly. In our experiments, the best value of
C and p is chosen by ten-fold cross validation.

Our experimental results are illustrated in Table 1. Obviously, p-norm SVM performs
the best. In Table 1, the data in 4th column shows the percentage of the number of the
right features over the number of the selected features, which means the bigger the value,
the better the result. The average error, average precision and sensitivity are computed by
100 experiments. It’s easy to see that p-norm SVM selects the least features with the best
accuracy. Along with the increasing of the number of redundant features, the performance
of p-norm SVM is still the best in selecting relevant features.
Real datasets

To test our method on real-world data, one NIPs benchmark data set(‘arcene’ [13] )
and two real microarray data sets (‘colon cancer’ [1] and ‘prostate cancer’[14]) are used.
According to Algorithm 3, the ten-fold cross validations on 3 datasets are conducted, and
the results are listed in Table 2. We can see that p-norm SVM performs better than the
other three methods in selecting features and the test error of of p-norm SVM is lower.
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Table 3: The genes selected by p-norm SVM

Gene Entrez Discription
Colon 377 Hsa.36689 H.sapiens mRNA for GCAP-II/uroguanylin precursor
cancer 765 Hsa.692 Human cysteine-rich protein (CRP) gene

1870 Hsa.1660 Peptidyl-prolyl CTS-TRANS isomerase
1325 Hsa.3016 S-100P Protein
1423 Hsa.1832 SMOOTH MUSCLE ISOFORM (HUMAN)
1873 Hsa.404 Human MXI1 mRNA

Prostate 6185 Hs.823 hepatoma mRNA for serine protease hepsin
cancer 2839 Hs.281587 Human (clone CTG-A4) mRNA sequence

6390 Hs.95420 Homo sapiens cDNA, 3’ end
10672 Hs.146355 Human c-abl gene, complete cds
6145 Hs.81047 untitled
10234 Hs.30250 Homo sapiens short form transcription factor C-MAF mRNA

Therefore, p-norm SVM is effective in selecting relevant features, compared with 1-norm
SVM, 0-norm SVM and SVM-RFE.

The genes selected by our method are listed in Table 3. Most of them have been
identified as tumor or tissue specific genes. For example, the gene 377, 1423, 765, 1870
in colon cancer dataset, have been proved to be relevant to colon cancer in [8]. For the
prostate cancer dataset, all selected genes except the gene 6145 are said to be relevant to
the prostate cancer in [19]. We should pay more attention to the gene 6145, it is selected
by p-norm SVM that means it might be relevant to the prostate cancer.

6 Conclusion
Feature selection is very important in many applications of data mining. This paper

focuses on the feature selection in classification via a new version of SVM named p-norm
SVM. Different from the 2-norm in the standard linear SVM, p-norm (0 < p < 1) of
the normal vector of the decision plane is used which leads to more sparse solution. By
using the successive linear algorithm, we can get an approximate local optimal solution to
the primal problem of the p-norm SVM. Furthermore, the lower bounds for the absolute
value of nonzero components in every local optimal solution is established, which provide
theoretical direction for the elimination of zero components in any numerical solution.
The numerical experiments show that the p-norm SVM is effective in selecting relevant
features, compared with 1-norm SVM, 0-norm SVM and SVM-RFE.
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