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Abstract  Kinetic models help to understand microbial metabolism and optimize biomass 
production. Up to date, only one kinetic model for Clostridium acetobutylicum 
acetone-butanol-ethanol (ABE) process has been reported. In the present work, we developed 
an improved kinetic ABE model, whose simulation results were more consistent with 
experimental observations, especially in terms of reflecting butyryl-phosphate and butyrate 
kinetics. Based on our model, we find that butyrate kinase has positive influence on butanol 
production while CoA transferase has negative effect, indicating that the path through butyrate 
kinase is preferred by the bacteria for converting butyrate to butanol. Analyses of the 
predictions may provide insight in the regulatory mechanisms of ABE process. 
Keywords  Kinetic model; ABE process; Butyryl-phosphate; Butyrate kinase; Butanol 

1 Introduction 
System modeling for microbial metabolism can reveal relevant factors about high 

yield of target products. Based on such models, we can develop operation strategies 
or optimize cultivation processes [1-4]. C. acetobutylicum is an extensively studied 
organism used for industrial production of acetone and butanol through 
acetone-butanol-ethanol (ABE) pathway (additional file 8) [5, 6], which comprises 
two branches as acidogenesis and solventogenesis. During acidogenesis, cells grow 
exponentially and vigorously produce acetate and butyrate, while solvents (butanol, 
acetone and ethanol) are not obviously generated. When shifting to solventogenesis, 
cells arrest their growth at stationary phase, solvents are produced and acids are 
reassimilated [5]. Multiple models based on metabolic flux analysis (MFA) and 
flux-balance analysis (FBA) have been built to simulate ABE pathway so far [5, 
7-10]. Although stoichiometric models can simulate overall flux distributions with 
limited data by using physicochemical constraints, they cannot properly reflect the 
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dynamics. In contrast, kinetics models are more efficient in modeling dynamics. By 
perturbation tests, system states deviating from normal can be simulated and it is 
possible to find the reactions with potential impacts on target product production. To 
date, many experiments have explored kinetic features in ABE process and a kinetic 
model was recently developed by H. Shinto et al. [11]. However, as most current 
models did, this model did not integrate metabolic regulatory effects of 
transcriptional control and other complex factors [12-14]. Moreover, it did not 
include some key metabolites, e.g. butyryl-phoshate (BuP), which was proved to be 
important in solventogensis [13-16]. 

In this work, we developed an improved kinetic model by integrating 
experimental information and knowledge not included in Shinto’s model. Our model 
incorporated BuP, described regulatory effects of transcriptional control and other 
complex factors with a time division pattern, and quantified them with enzyme 
activity coefficient (EAC). The simulation results were much more consistent with 
published experiments than those of Shinto’s model. Furthermore, the results of 
perturbation tests may provide insights in the regulatory mechanisms of ABE 
process. 

2 Results 
All results were based on our new model (Equation (1), Method section). We did 

dynamical simulation with respect to the condition in Zhao et al’s work and 
compared the results with their observations. We then did perturbation analyses to 
detect which reactions had large impacts on butanol production. 
2.1 Dynamical simulation 

The initial value was set according to the condition in Zhao et al.’s experiment 
(2005) [13] and simulated kinetic profiles of metabolites were shown in Figure 1A 
and 1C. These results were quite consistent with experimental observations (Figure 
1B and 1D). The metric units in Figure 2A and 2B are different (Figure 1A: mM; 
Figure 1B: pmol/gDW), since the measurement of BuP in Zhao et al’s experiment 
accepts the unit of pmol/gDW. It’s impossible to know the exact conversion between 
mM and pmol/gDW because there is no such relation in SI metric unit system. But 
the quantity scale can be approximated given the size of ordinary C. acetobutylicum 
cell, and this scale is consistent with that in our simulation.  
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Figure 1. Comparison of simulation results with Zhao et al.’s experimental observations. A is simulated 
BuP kinetics; B is experimental observation of BuP [13]; C is the simulated kinetics of butanol, butyrate and 
acetone; D is experimental observations of butanol, butyrate and acetone [13]. The figure shows that the 
simulated curves are consistent with experimental ones both in quantity scale and shape.  

In our results, the first peak of BuP was shown to coincide with the onset of solvent 
production (Figure 1A, 1C). This was a phenomenon reported in experimental 
studies and had biological implications [13-16]. Besides BuP, we also demonstrated 
that we had a more precise simulation on butyrate, a crucial product in cell growth 
and solvent production [5] (Figure 2). In Shinto’s model, when substituting in Zhao et 
al’s condition, the quantity scale of butyrate curve didn’t resemble precisely with 
Zhao et al’s experimental curve (Figure 2B). This further demonstrated that our 
model had more capability in approaching real biological events. 

 
Figure 2. Comparison of simualted butyrate kinetics with that of Shinto’s model under Zhao et al’s 
condition. A is simulated butyrate kinetics based on our model. B is simulated butyrate kinetics based on 
Shinto’s model. As shown, A is more consistent with Zhao et al’s experimental observation. 

2.2 Perturbation analysis 
Butanol was most valuable among the solvents produced in ABE fermentation as it 

had advantageous properties (e.g. better value for the heat of combustion) [6]. Thus 
we did a series of perturbation analyses to assess which enzymes/reactions had large 
impacts on butanol production. We used Rd values to measure the impacts (see 
Methods section for Rd’s definition). We did perturbations with magnitude of ±5% 
on both single parameters and double parameter pairs. We traversed the entire 
parameter set and the result set of single, double parameter perturbations included 
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100 and 4900 entries respectively (additional files 1, 2; additional files 3-6). Among 
all results, there were several interesting ones that might provide insights in ABE 
process. It could be intuitively concluded that BK was important in solventogensis as 
it linked two crucial intermediate But and BuP. And based on our analyses, we indeed 
found that shifting BK’s Vmax resulted in relatively large influences on butanol 
production (additional files 1-6). Actually, BK activity had positive correlation with 
butanol production and the butanol change caused by shifting BK’s Vmax ranked the 
5th in the profile of single parameter shifts (additional files 1 and 2). This indicated 
that BK, which coupled PTB to generate butyrate as well as catalyzing its 
reassimilation, was important in butanol production as compared with other enzymes 
such as AAD (the enzyme produced ethanol). Besides, BK activity’s impact was 
greater than that of AK (additional files 1, 2), indicating butyrate reassimilation had 
more influence on butanol production than acetate reassimilation. Our computation 
also showed that CoAT, which also received butyrate as substrate, had negative 
correlation with butanol production as up-shifting its capacity (increasing Vmax or 
decreasing Km) decreased butanol production (additional files 1, 2). As BK and 
CoAT both accepted butyrate as substrate, up-shifting BK’s capacity or 
down-shifting CoAT’s capacity caused more butyrate received by BK and the reverse 
operations led to the contrary case, we concluded that if more butyrate was received 
by BK, butanol production increased; and if more butyrate was received by CoAT, 
the situation was on the contrary (Figure 3). Therefore we further deduced that BK 
had more efficiency than CoAT during solventogenesis and butyrate reassimilation 
relied more on BK rather than CoAT.  

There were some places where our model’s predictions differed from those of 
Shinto’s. For example, our results showed that PTS had positive influence on butanol 
production, while by Shinto’s model, PTS’s influence was negative. Given the fact 
that PTS acted in nutrient uptake and many processes related to ABE pathway were 
subjected to nutrient induction, our prediction was more consistent with intuitive 
knowledge [17]. 

 
Figure 3. Illustration of BK, CoAT and AK’s influences on butanol production. BK’s influence is positive 
correlation with butanol production shown by the green arrow. CoAT’s influence is negative correlation shown 
by the red arrow. AK’s influence is positive correlation shown by the blue arrow, indicating smaller magnitude 
than BK. 

3 Discussion 
Rational system modeling can help understanding biological mechanisms. We can 

retrieve quantitative knowledge from dynamical simulation and use it in in-lab 
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experiments [2-4]. As many studies related to C. acetobutylicum ABE pathway have 
been reported, kinetic modeling becomes feasible and enables us to make 
computational predictions. Nevertheless, the previous model (Shinto et al, 2007) has 
several drawbacks as described in earlier context. To overcome these drawbacks, we 
have established a new model with improved properties and superior results. 
3.1 Model improvements 

First, BuP is key metabolite and we incorporate it into model to reflect relevant 
biological events that are specific to ABE kinetics [12-15]. The correspondence 
between BuP concentration climax and solventogenesis onset is not merely a natural 
consequence that BuP is the intermediate between BCoA and But. There are 
implications on the genetic level as stated in Zhao et al’s study [13-16]. Many 
important solventogenic genes, such as adhE1 (CAP0162), adhE2 (CAP0035 ), ctfA 
(CAP0163), ctfB (CAP0164), adc (CAP0165), bdhA (CAC3298), bdhB (CAC3299), 
etc. have expression profiles that strictly correlated with BuP kinetics [13]. Although 
the detailed mechanism of how BuP acts to regulate ABE process has not been very 
clear yet, its functional importance has been experimentally confirmed [13-16]. Our 
model accounts for this knowledge and is successful in representing the phenomenon. 
Second, as suggested by experimental studies [12, 18-20], we assume that enzymes 
are regulated by complex factors (e.g. transcription control) to exhibit different 
activities to fulfill conditional requirements of different periods. In kinetic models 
based on classical biochemical system theory (BST), enzyme activity levels are 
constant by default and they are only regulated by substrates/products, as in Shinto’s 
model, the shut-downs of enzymes are due to glucose insufficiency only. But various 
evidences indicate shutting-down of acidogenic enzymes in solventogenic phase 
despite glucose sufficiency and inactivation of solventogenic enzymes at the 
beginning of acidogenesis. Thus it is suggested BST can not properly simulate in 
vivo conditions. Therefore, to maintain the appropriateness for in vivo consitions, we 
describe the regulatory effects of complex factors using a time division pattern, 
where time is divided into several periods according to enzyme activity variations, 
allowing enzyme activities to vary. As shown by our simulation, this pattern can 
better reflect the 2-phase mode of ABE process, in which acids are vigorously 
generated during the earlier phase and solvents are produced during the latter one. 
Our definition of the time division pattern is amount to extending BST’s application 
to in vivo conditions. Third, we introduce “enzyme activity coefficient (EAC)” to 
quantify enzyme activity variations (see Method section for EAC’s definition and 
calculation). To approximate enzyme activity curves, numerical interpolation 
(Lagrange, Legendre, etc.) should have been employed as to obtain fully continuous 
functions. But measurements in activity assays are usually not precise, and 
interpolation results in huge mistakes and distorts the original curve profile when 
errors are large. On the contrary, calculating the average as in EAC’s definition 
leaves the error just as the original, and the curve at least will not be distorted when 
measurements are not precise. Moreover, our design of EAC is calculating a ratio, not 
the particular value at each time instance. This practice allows the error to be divided 
by a denominator, further lowering the error level and enhancing the reliability of 
EAC values. 
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3.2 Dynamical simulation 
After estimating the newly introduced parameters (Method section), we compared 

our simulation with observations of a published experiment (Zhao et al, 2005), 
whose information are not utilized in parameter estimation. It turns out that our 
results are significantly consistent with the observations and superior over Shinto’s 
model in reflecting the kinetics of BuP and But. This indicates that Shinto’s model is 
well fitted for its own condition but may not be suited well for others. In contrast, our 
model can accommodate more conditions because of the improvements we have 
made.  

Simulations of kinetic models can help develop in-lab strategies, thus facilitating 
the success of metabolic engineering. We have simulated thousands of perturbed 
states to detect and assess potential spots that largely influence butanol production. 
The magnitude of in silico perturbation should not be too large because real systems 
may exhibit alternative activations for other pathways when undergoing substantial 
fluctuations [21, 22]. It is fairly assumed that a perturbation of ±5% does not destroy 
the system’s survival and the functional normality is not interrupted due to biological 
robustness [22-24]. In our computation, we find an interesting phenomenon that 
BK’s activity exhibits positive influence on butanol production while CoAT has 
negative effects. And more convincingly, Rd decreases when increasing the Vmax 
values of BK and CoAT at the same time, which means CoAT’s negative effect can 
balance BK’s positive effect, confirming CoAT’s counteraction to butanol production. 
Based on this discovery, we propose a possible scenario that BK plays the leading 
role in acid reassimilation. If more butyrate is received by BK as substrates, acid 
(butyrate) reassimilation efficiency is enhanceed and butanol production is benefited. 
And if more butyrate is received by CoAT, the situation is on the contrary. It may not 
seem economical for the bacteria to use the BK-PTB path to reassimilate butyrate 
since running through it consumes ATP. Therefore, the underlying mechanism is 
possibly that path BK-PTB generates ATP for bacteria growth during acidogenesis, 
while the bacteria doesn’t need to grow in solventogenesis and ATP has surplus, and 
these surplus ATPs are utilized to proceed butyrate reassimilation. It’s noteworthy 
that acids are severely poisonous to bacteria cells and it is a priority for the bacteria to 
convert acids to other forms. In addition, enhanced butanol production means more 
acids are converted. Therefore we can further deduce that the reason why the bacteria 
prefers path BK-PTB at the expense of ATP is because BK is efficient for responding 
to severe poison stress and the energetic basis for this process is the ATP surplus 
generated during acidogenesis. 
3.3 Significance 

Traditional kinetic models cannot accommodate complex metabolic regulatory 
effects (e.g. gene transcriptional control) and previous integrative bio-system models 
are mainly based on the FBA method, in which gene transcriptions are described by 
Boolean logic and the metabolic level is expressed by flux balance equations. Since 
FBA and Boolean logic cannot properly reflect system dynamics, we develop a new 
model to degenerate complex regulatory effects to a form that is compatible with 
kinetic models. In addition, our approach of representing complex regulatory effects 
with a time division pattern and EAC is extendable and can be generalized for 
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modeling other bio-processes. For instance, we can relate enzyme activities to gene 
transcriptional levels, building a formulism between them and including other factors 
such as stochasticity.  

In the post-genomic era, massive information and experimental data have been 
accumulated. It is important to develop methods or tools that can make use of existed 
information/data and organize, manipulate and interpret them comprehensively [25, 
26]. Our work attempts to serve that goal by integrating existed information from 
multiple aspects and describing them mathematically. Nevertheless, the usage of “net 
effects of regulatory factors” in our modeling doesn’t seem to build direct links 
between genetic and metabolic levels. But if adequate information about regulatory 
factors is elucidated, better formulism can be built to link the two levels and further 
studies on the control of bacteria cellular systems can be conducted.  

4 Methods 
4.1 Incorporating butyryl-phosphate 

BuP was key intermediate in conversions between But and BCoA. It was reported 
that BuP played a crucial role in solventogenesis, as the initial peak of its 
concentration marked the onset of solvent production [13]. Adding BuP means 
splitting the originally lumped reactions between But and BCoA (as in Shinto’s 
model) so as to represent their intermediate BuP as a system component. Here we 
added two new reactions to denote the conversions from BuP to But and BCoA 
respectively. Hence, the butyrate formation/reassimilation branch was restructured 
and BuP appeared as another system component. Mathematically, we created rate 
equations for the new reactions and re-formulated the mass balance equations 
relating to But, BCoA and BuP. For details, see additional file 8. 
4.2 Time division pattern 

We assumed enzyme activity variations were net effects of transcriptional control 
and other complex factors. As experimental studies suggested enzyme activities 
varied with time [12, 18-20, 27], we developed a time division pattern to reflect the 
regulatory effects. We divided time into several intervals according to the enzymes’ 
activity variation profiles [18, 19]. Here we only considered a subset of enzymes, 
which were either located on acid/solvent production reactions or directly associate 
to them. We adopted activity variations of the enzymes in consideration and regarded 
others’ as constants. All enzyme activity profiles were collected from published 
experimental studies [18, 19] and the experiments were done under the identical 
culture conditions that our simulation based on [11, 13]. For details of constructing 
the time division pattern, see additional file 8. 
4.3 Enzyme activity coefficient 

We introduced EAC to quantify enzyme activity variations. EACs were formulated 
as time-dependent, piecewise linear functions. At each time instance, the EAC value 
was the ratio of the current enzyme activity to its maximum activity. Here we 
employed the divided intervals in the time division pattern (see the previous 
paragraph) as markers of time. And for computation simplicity, we approximated 
EAC with a set of 0th splines with respect to these markers. In other word, the EAC 
value remained constant within a divided interval and it changed to another constant 
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when stepping into another interval. The constant was the ratio of the average 
activity level in this interval to the maximum activity. We calculated all EACs of the 
considered enzymes (additional file 8) and multiplied them to their corresponding 
rate equations to reflect activity variations. All data of enzyme activities were 
collected from literatures [18, 19]. For details of computing EAC, see additional file 
8. 
4.4 New model 

The new model contained 21 rate equations and 17 differential equations, 
involving 50 kinetic parameters. The model was built by integrating ABE kinetic 
features identified so far. Except for those included in Shinto’s model [11, 28-30], 
EACs were multiplied to rate equations. The model was expressed in the form of 
ordinary differential equation (ODE) system as in Equation (1): 

( ) ( , )d t
dt

= ⋅ ⋅
Y A E R Y P

                        (1) 

where Y was the vector of metabolites’ concentrations; A was the stoichiometric 
matrix of mass balance equations; E=diag{EAC1,…,EAC21} and EACs 
corresponding to enzymes with constant activities were set to 1; R was the vector of 
rate equations without EACs; and P was the entire set of parameters. For details of the 
equations, symbols and abbreviations in the model, see additional file 8. 
4.5 Parameter estimation 

We applied Genetic Algorithm (GA) to de novo estimate unknown parameters 
introduced by new reactions (Section 4.1). We considered the experimental 
observations of 16 metabolites in Shinto’s work to be valid, and assumed that the 
correct value assignment of the unknown parameters definitely reproduced these 
valid observations under Shinto’s condition. Therefore the fitness function in 
optimization was formed by forcing the 16 metabolites’ concentrations Y(1:16) to 
match Shinto’s observations Y0(1:16). We computed parameter values that 
minimized the fitness function and accepted them as numerical solutions. In addition, 
we didn’t employ any qualitative or quantitative information of BuP or Zhao et al.’s 
experiment in this process. For parameter values, see additional file 7. And for details 
of parameter estimation, see additional file 8. 
4.6 Perturbation analysis 

We did perturbation analysis to assess enzymes/reactions’ impacts on butanol 
production. By consecutively shifting the enzymes’ Vmax and Km values and using 
the normal state as control, relative changes of in silico butanol production were 
computed. We defined the relative change in butanol production as Rd (a ratio 
expressed in Formula (2)): 

0 0

0

( ) ( )

( )

tf tf

p ct t
tf

ct

y t dt y t dt
Rd

y t dt

−
= ∫ ∫

∫                       
(2) 
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where yp was the instantaneous butanol concentration in perturbed state, and yc was 
that in normal state. For approximation, we discretized the integrals in Formula (2) 
with the trapezoid method. The results of perturbation analysis were in additional 
files 1-6, and for details of computation, see additional file 8.  
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